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I MiN-2-LiN(Z,) parameterized by solution cost
Dabrowski et al. [1], communicated by George Osipov

In MIN-2-LIN(Z4) we are given a set of equations of the form ax+by = ¢, where x and y are variables,
a,b,c € Zy4, and an integer k. The goal is to delete at most k equations from the set so that the remaining
ones are satisfiable in Z4.

Question 1. Is MIN-2-LIN(Zy) in FPT or W/1/-hard parameterized by k?

It is known that e.g. MIN-2-LIN(Z) is in FPT and MIN-2-LIN(Zg) is W[1]-hard. Using [1] and some
simple tricks, one can reduce MIN-2-LIN(Z,) to the following version in FPT-time: the input is a set of
equations with a distinguished variable z and an integer k, with each equation of the form x = 2y or
x = 3y; the goal is to delete at most k equations so that the remaining ones are satisfiable in Z4 by an
assignment that maps z to 1.
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B Approximating Negative Directed Feedback Arc Set

Communicated by George Osipov

In NEGATIVE DFAS we are given a directed graph with rational labels on the arcs, and the goal is to
delete at most k arcs from the graph so that no directed negative cycle remains. When parameterized by
k, this problem generalizes DFAS (special case with all arcs labelled —1) and SUBSET DFAS (special case
with arcs labelled 0 or —1), which are in FPT. On the other hand, NEGATIVE DFAS even with labels
—1, 0 and 1 is W[1]-hard [2] (see also [1] for results under structural and combined parameterizations).

Question 2. Can NEGATIVE DFAS parameterized by k be approrimated within a constant factor in
FPT time?

Note that constant-factor approximation in polynomial time is already ruled out for DFAS under the
Unique Games Conjecture. This problem can be formulated as MINCSP on domain Q with constraints
of the form  —y < a for a € Q. The case with a € {—1,0, 1} is sufficiently general when the arc labels
are given in unary.
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B List Homomorphism by Edge Deletion

Communicated by George Osipov

Let H be an undirected graph with loops allowed. In LisT HOMOMORPHISM BY EDGE DELETION
FOR H (LHOMED(H)), our input is a graph G, a function L : V(G) — 2V() and an integer k. The
question is whether there exists a set of edges X C E(G) of size at most k such that G — X admits
a homomorphism f to H such that f(v) € L(v) for all v € V(G). We are interested in parameterized
complexity of this problem with k£ as the parameter, and obtaining a dichotomy depending on the host
graphs H. For irreflexive graphs H, the dichotomy follows by combining [1] with [2]. Tt states that,
for irreflexive graphs H, LHOMED(H) is in FPT whenever the decision version LHOM(H) (i.e. the
version with k& = 0) is in P. For reflexive graphs, Okrasa, Pilipczuk, and Rzazewski have an unpublished
algorithm that extends the statement above to purely reflexive graphs. What about mixed graphs, i.e.
those containing both reflexive and irreflexive vertices? Consider the following graph:
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Question 3. What is the complexity of LHOMED(H) for the graph H above?

For some mixed graphs, the same algorithmic ideas as from the irreflexive and reflexive cases can be
used (by unpublished results with Okrasa and Rzazewski). This graph is a minimal unknown case.
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- Non-trivial exponential-time running bounds for symmetric Boolean
languages
Lagerkvist and Wahlstrom [1], communicated by Magnus Wahlstrém

In [1], a project was initiated to investigate the exact exponential time complexity of CSP(T") for
NP-hard CSPs, depending on the language I'. In particular, for which languages I' can the CSP over
I be solved in time O(c™) for some ¢ < 2? (We are assuming Boolean languages for simplicity here;
the problem is plenty complex enough with this restriction.) This was undertaken under an algebraic
framework with some promising partial results.

Unfortunately, the project runs into annoying issues of representation of constraints (and of having
a very difficult structure to get a handle of).



To avoid this issue, a simpler question that should be much more amenable to abstract analysis is to
assume that the language is symmetric, i.e., arelation R in the language accepts a tuple t = (z1,...,2,) €
D7 only based on the number of times each element from the domain occurs in ¢.

To be more precise, let D = {0,1} be the boolean domain and let S C {0,...,r} for some r € N.
Then S and the arity r define a symmetric relation Rg C {0,1}" as

t
(.Z‘l,...,l‘r) €R5<:>ineS.

=1

For example, for r = 3 and S = {1,2,3}, Rs defines the positive 3-clause. Say that a language T is
symmetric if every relation in I' is symmetric.

Question 4. For which symmetric Boolean languages T' can CSP(T') be solved in time O(c™) for some
¢ <2 (e.g., assuming SETH for lower bounds)?

If this is too much of an open-ended project, let me pick up a specific restriction where the question
is open. This is provably a language with restricted algebraic structure, so that it cannot trivially be
used in a proof of SETH-hardness, but an algorithm seems somewhat elusive.

Question 5. A Sidon set is a set S C N such that all sums a + b for a,b € S are distinct (i.e. for
a,be,d € S, if a+b=c+d then {a,b} = {c,d}). Can CSP(T) be solved in time O(c"), ¢ < 2 if the
relations in ' are symmetric relations defined via Sidon sets?

For both of the above questions, a non-uniform algorithm is fine. The purpose is to investigate the
toolbox of non-trivial exponential-time algorithms, not to wrestle with questions about representations
and oracle models.
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B Running times of inv(p)-SAT

Communicated by Magnus Wahlstrom

This problem asks two specific questions about the running time of SAT problems defined only via
the existence of a single partial polymorphism p, referred to as INV(p)-SAT in [1]. This problem class
was designed to ask questions about limits on the possible running times for NP-hard problems based
on SETH.

Let us recall some definitions from [1]. Let R(X) with R C {0,1}" be a constraint on a tuple of
variables X = (z1,...,2,). A partial assignment to X is an assignment f: X; — {0,1} for some
X; € X. An extension oracle for R(X) is an oracle that, given a partial assignment f to X, reveals
whether there exists a tuple ¢ € R such that t; = f(x;) for every z; € Xy. Then INV(p)-SAT in the
extension oracle model is the SAT problem where every constraint is provided only via an extension
oracle, with the promise that every relation R used in a constraint R(X) in the input is preserved by
the partial polymorphism p.

We review two specific examples. The partial Maltsev operation over D is the partial operation p on
D such that for all z,y € D,

p(z,z,y) =ply, 2, x) =y,

and for all other inputs z,y,z € D, p(z,y,2) is undefined. Then INV(p)-SAT over captures precisely
the SAT problems over domain {0, 1} that can be solved via the meet-in-the-middle strategy, and cor-
respondingly (with a tiny bit of care) INV(p)-SAT can be solved in time for O*(2"/2) extension oracle
queries on inputs with n variables.

In particular, note that SUBSET SUM corresponds to an instance of INV(p)-SAT with a single con-
straint, where we do not have an efficient extension oracle. Via an appropriate branching strategy, this



can be reduced to an instance of INV(p)-SAT with multiple constraints, each of which is provided via an
extension oracle with a running time of 2°™) per query [1]. Hence, the algorithm for INV(p)-SAT can
be used to solve SUBSET SUM in time O(2"/21°() and if INV(p)-SAT can be solved in time O*(¢") for
any ¢ < v/2 then so can SUBSET SUM.

The latter is a major open problem, and the natural approaches tend to involve heavy use of number
theory.

Can we exclude such an algorithm in the very restricted extension oracle model? We note that
INV(p)-SAT for the partial Maltsev operation cannot be solved in time O(2(1/482=4)7) for any ¢ > 0
assuming randomized SETH [1], but there is clearly quite a gap between the upper and lower bounds
here.

Question 6. Can INV(p)-SAT where p is the partial Maltsev operation be solved in O*(2°") time for
some ¢ < 1/2 in the extension oracle, or can this be excluded e.g. under SETH?

Next, consider the k-SAT problem. For k& > 3, let s, be the infimum over all s such that k-SAT
can be solved in time O*(2°™). Significant work (and multiple conjectures) has gone into investigating
si. ETH (the exponential time hypothesis) is equivalent to s3 > 0 and SETH (the strong exponential
time hypothesis) is equivalent to limg_o, s = 1. The fastest known algorithms for k-SAT bound
s = 1 —Q(1/k). An even more drastic conjecture, the Super Strong Exponential Time Hypothesis
(SSETH) states that this is optimal, i.e., s = 1 — ©(1/k) [4, 3]. This has been confirmed to be the
convergence for specific algorithms [2] but appears somewhat contentious (cf. [3]).

The partial k-NU operation, or partial k-near unanimity operation, over a domain D is the k-ary
partial operation defined as

nug(z,z,...,y) =... =ng(y,z,...,x) ==x

for all z,y € D, and otherwise undefined. Then, again restricting to domain {0,1}, k-SAT for k > 3
is preserved by nugi1 but not by nuy (and nugy is a pretty natural property of k-SAT). Let ¢x be the
infimum over all ¢ such that INV(NUj)-SAT can be solved in time O*(2") in the extension oracle model.
Clearly this is a much broader task than simply solving k-SAT.

The best lower bounds under SETH bound ¢ as ¢ = 1 — Q(log k/k) [1], which incidentally matches
the convergence of the algorithm of Vyas and Williams [3] on random k-SAT formulas.

Question 7. Can we bound ¢, =1 — O(1/k), e.g. under SETH?
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- Languages with linear non-redundancy
Asked repeatedly [3, 2, 1], communicated by Magnus Wahlstrom.
A language T" has non-redundancy f(n) if every formula F' over I' with n variables contains a sub-

formula F’ on at most f(n) constraints such that F and F” have identical solution sets. This is closely
related to the notion of a sparsification of CSP(T'), i.e. a kernelization of CSP(T") parameterized by n. If


https://youtu.be/adJvi7tL-qM?t=925

every relation in T' has arity at most r, then T trivially has non-redundancy f(n) = O(n"), but for many
cases significantly better upper bounds are possible.

The languages where the trivial bound is tight have been characterized by Carbonnel [1] (see also
Chen et al. [2] over the Boolean domain). But what about the other end of the scale? The following is
asked by Carbonnel [1], but relates closely to sparsification questions asked previously [3, 2].

Question 8. Which languages T’ have non-redundancy f(n) = O(n)?

Over the Boolean domain, there is a plausible candidate due to Chen et al. [2], who characterize
languages that can be encoded over integer rings and show that every such language has sparsification
f(n) = O(n). However, even over the Boolean domain it is not known whether this covers all cases, and
over larger domains the question is wide open.
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- Polynomial kernelization of Boolean MinCSP

Communicated by Magnus Wahlstrém

With the result of Kim et al. [1], we finally know which BOOLEAN MINCSPs that are FPT and
W|[1]-hard under the natural parameter. But for which languages does the problem have a polynomial
kernel? More precisely, the question is the following.

Question 9. For which Boolean languages T' does MINCSP(T') have a polynomial kernel parameterized
by the number of unsatisfied constraints (under the usual assumptions, e.g. the polynomial hierarchy does
not collapse)?

The problem domain includes ALMOST 2-SAT as one item, which, famously, has a randomized
polynomial kernel via matroid methods [2] but is open for a deterministic kernel. Hence randomized
kernelizations are fine. It also, to the best of our knowledge, does not cover any of the intractable
“dragons” of polynomial kernelization such as MULTIWAY CUT and DIRECTED FEEDBACK VERTEX SET.
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B Parameterised complexity of Promise CSPs
Communicated by Andrei Krokhin

Promise CSP (PCSP) is a recent generalisation of the standard CSP. It comes in two versions: decision
and search, which are in general not known to be equivalent. The most prominent example of PCSP



is approximate graph colouring: for fixed £ < ¢, decide whether a given graph is k-colourable or not
even c-colourable (the promise being that the graph falls into one of these two categories). The search
version of that is, given a graph that is promised to be k-colourable (but the colouring is not given), find
a c-colouring. The general PCSP is parameterised by two relational structures A and B such that there
is a homomorphism A — B. Note that the special case when A = B is precisely the standard problem
CSP(A).

PCSP(A,B) can be solvable in polynomial time even if both CSP(A) and CSP(B) are NP-complete.
One standard example of this is when the two CSPs are (monotone) 1-IN-3-SAT and (monotone) NOT-
ALL-EQUAL-SAT: given a satisfiable instance of (monotone) 1-IN-3-SAT, it is NP-hard to find a satisfying
assignment for it, but if one relaxes each 1-IN-3 constraint in it to allow all NOT-ALL-EQUAL triples,
then one can find in polynomial time a satisfying assignment for the relaxed instance.

One can investigate the parameterised complexity of many problems around PCSPs - there is prac-
tically nothing known beyond the case of standard CSPs. For a recent survey about PCSPs, see [1] and
references therein.
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- VCSPs parameterized above lower bounds

Communicated by Magnus Wahlstrém

This is another less precise open question.

The immediate parameter to study the parameterized complexity of VCSPs and other optimization
problems is the natural parameter, i.e. the solution cost. However, for some problems you get very
interesting results by parameterizing by the relazation gap of some suitable relaxation.

There are two classical results in this direction:

e MUuLTIWAY CUT can be solved in time O*(45~#), where k is the solution cost and y is the optimum
of the half-integral LP relaxation due to Garg et al. [1]. This implies that MuLTIWAY CUT can
be solved in time O*(2¥), which for the vertex deletion variant is the fastest known algorithm
parameterized by k.

e VERTEX COVER can be solved in time O*(4¥~#) by the same strategy, which can be improved to
O*(2.3146%~H); here, p is the optimum of the Nemhauser-Trotter LP-relaxation [4]. This does not
give the fastest algorithm for VERTEX COVER under the natural parameter, but it is an important
result in its own right due to the close connection to this parameterization and the ALMOST 2-SAT
problem.

However, such results are not ‘normally” possible — for an arbitrary LP-relaxation, it is likely to be
NP-hard even to find a solution of cost u, i.e. with gap & — u = 0. Thus, the lower bound p must be of
some special type.

Some extensions to the above for other VCSPs are known [3, 5], but the results remain relatively
“isolated” and we do not have a good picture of when such a result is possible. (More exotic variants
also exist [2] but may go beyond this basic question.)

Is there a good “CSP perspective” on when a VCSP is FPT parameterized by the relaxation gap k— p,
depending on the language and the choice of lower bound p? Can it for example be usefully studied as
a parameterization of some PCSP variant?
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