A theory of gadget reductions for CSP

Andrei Krokhin

AR
@ Durham

University

Andrei Krokhin A theory of gadget reductions for CSP

Useful surveys

Much of what is covered in this lecture can be found in survey

m Polymorphisms, and how to use them.
L. Barto, A. Krokhin, and R. Willard.

It is written specifically for those without algebra background!

See also the full (open-access) volume of surveys:

m The Constraint Satisfaction Problem: Complexity and
Approximability. Editors: A. Krokhin and S. Zivny.
Dagstuhl Follow-Ups series, Volume 7, 2017.
http://drops.dagstuhl.de/portals/dfu/index.php?semnr=16027

Andrei Krokhin A theory of gadget reductions for CSP

Constraint Satisfaction Problem (CSP)

Fix finite relational structure A = (A; Ry, ..., R,) (aka constraint
language) where each R; C A% or R;: Ak — {true, false}.

Definition

An instance of CSP(A) is a list of constraints over vars V, e.g.

Rl(X7y7Z)7 R1(27Y7 W)7 R2(Z)7 R3(Xa W): R3(y>)/)

where each R; is from A.
Question: Is there s : V — A satisfying all constraints?

Many other variants, e.g.:
m infinite A (but the instance is still finite)
m nothing (or something other than relations) is fixed
m real-valued functions instead of relations (for optimisation)
B many questions other than plain satisfiability

Andrei Krokhin A theory of gadget reductions for CSP

Examples, a conjecture, and a theorem

m k-CoL: A = ([k]; {#})

k-NAE: A = ([k]; {(a,b,c) € [k]?|a# bVa#cVb#c))
— (essentially) k-colouring for 3-uniform hypergraphs

3-Sat: A =({0,1};(xVyVz),(xVyV-z),...)

HORN 3-SAT: as above, each clause has < 1 unneg var

3-LiNp: A= (Zp; x+y+2z=0, x+2y+3z=7,...)

UNIQUE GAMES-k: A = ([k]; {(a,7m(a)) | a € [k]}) where 7

runs through all permutations on [k].

Conjecture (CSP Dichotomy Conjecture, Feder-Vardi'98)

Every CSP(A) is either in P or NP-complete.

Theorem (Bulatov'17; Zhuk'17)

The above conjecture is true.

Andrei Krokhin A theory of gadget reductions for CSP

A theory of structured reductions for CSP (high-level view)

“can simulate”

Constraint
languages

Andrei Krokhin A theory of gadget reductions for CSP

Simulation via gadgets

Three (increasingly more general) levels of simulation:

1. primitive positive (pp) definitions (= gadgets, same domain)
Ex.: Let A; = (A; R), R ternary, and Ay = (A; T, S) be s.t.

T(x) = 3w R(x,w,x), S(x,y)=3w R(x,y, w)AR(w,y, x).
Then an instance of CSP(Ay), say

T(y), 5(x,5),5(z,x)
can be re-written as an instance of CSP(A;)

R(yv Wl,)/), R(Xaya W2)7 R(Wg,y,X), R(Z,X, W3)a R(W37X72)

2. pp-interpretations (gadgets, possible change of domain)

3. pp-constructions (the above + use of constants)

Andrei Krokhin A theory of gadget reductions for CSP

Gadget reductions

m Take any 2-SAT instance (x VY) A (y VZ) A (y VT) A (x V u)
m Let R be the set of solutions to it, projected to {y, z, u},
R ={(1,%,%),(0,0,0)}, and let Co = {(0)}, G1 = {(1)}.
m If A= ({0,1}; R, Co, C1) then CSP(A) reduces to 2-SAT.
m If [is an instance of CSP(A),

— replace each R(y, z, u) constraint by the above 4 clauses
(using fresh x each time)

— replace each Co(w) by (W V W) and each Ci(w) by (w V w).
For the above reduction to work,

m we don't care how big the gadgets are or even what they are

m we only need to know that they exist.

Andrei Krokhin A theory of gadget reductions for CSP

Polymorphisms by example

m Take any 2-SAT instance (x VY)A(y VZ)A(y V1) A (x V u)
m Take any three solutions a, b, c to this instance

m Apply the ternary majority operation m to a, b, c

coordinate-wise (variables ordered here as x, y, z, u)

m m m m
R

= (1 1 1 0) sat

(1 1 0 1) sat

c= (1 0 0 0) sat

m(a,b,c)= (1 1 0 0) sat

Andrei Krokhin A theory of gadget reductions for CSP

Polymorphisms

An operation f : A — A is called a polymorphism of a k-ary
relation R C Ak if, for any m x k matrix with rows in R,

f f f
4 4 4
(ail s e, alk) eER
(amil s e Amk) €R
U
(f(all,...,aml) s e, f(alk,...,amk)) €R

Call f a polymorphism of A if it is such for all R in A.
Notation: Pol(A).

Andrei Krokhin A theory of gadget reductions for CSP

More examples of polymorphisms

1. Consider R(x,y,z) =XV ¥ V z and binary ops max and min

1 00 €R 7?7 7 R
01 0 eR ? 7?7 7?7 eR
110 4R 1 1 0 ¢R

2. Every polymorphism of 3-SAT is a projection (aka dictator),
i.e. f(xy,...,xp) = x; for some /.

3. Every polymorphism of 3-CoOL is of the form
f(x1,...,xn) = 7(x;) for some i < n and permutation 7

4. If A= (A, E) is a digraph then f is a polymorphism of A if
(a1,b1),...,(an, bn) € E = (f(a1,...,an), f(b1,...,bn)) € E.
In other words, f is simply a homomorphism from A" to A.

Andrei Krokhin A theory of gadget reductions for CSP

A Galois connection

Notation:
m Let (A)p, be the set of all relations pp-definable in A (and =).
m Pol(A) is the set of all polymorphisms of A.
m For a set C of operations on A, Inv(C) = {R | C C Pol(R)}

Theorem (Geiger'68; Bodnarchuk et al.’69)

For every A, we have (A)p, = Inv(Pol(A)).

In words, “pp-definable in A" = "breaks no polymorphisms of A".

m Polymorphisms of A precisely control what A can pp-define.

Andrei Krokhin A theory of gadget reductions for CSP

Clones

For any A, Pol(A) is a clone.

Clone = set C of multivariate functions on a set A such that
1. C is closed under composition, and
2. C contains all projections/dictators (f(xi,...,xn) = X;)
Examples of clones:
m trivial clone T, consisting of all projections.
m all linear functions (wrt some fixed ring)

m all monotone functions (wrt some fixed partial order)

m When |A| = 2, all clones have been described [Post'1921].

m For |A| > 2, there is no hope to get a complete description.

Andrei Krokhin A theory of gadget reductions for CSP

How to find gadgets (even though you don’t have to)

Natural questions: Given a structure A and a relation Ry:
1. How do you check whether Ry € (A)pp?

2. If this holds, how do you find an actual gadget?

Answer: There is a generic way, via polymorphisms.

m Ry € (A)pp iff Ry is preserved by all f € Pol(A) of arity |Ry|.
m There is an algorithm that solves both (1) and (2) [CJG'99]

— it puts problem (1) in complexity class coNEXPTIME.

— For Boolean CSPs, both (1) and (2) are P [Dalmau’00]

— For some d > 1, (1) is coNEXPTIME-complete for A with a
d-element domain [Willard'10].

— The previous claim is open, if one fixes A (not just its domain).

Andrei Krokhin A theory of gadget reductions for CSP

The algorithm, by example
A =({0,1,2}, %, Co, C1, G) and Ry = {(0,1),(0,2),(1,1), (2,2)}.

Idea: represent polymorphisms f € A of arity 4 as a 3*-ary relation
S = {(f(0000), f(0001), £(0002),...,f(2222)) | 4-ary f € Pol(A)}.

We have S € <A>pp: one can define S(Xoogo, R ,X2222) as

(/\ Xileklll 7& Xl'gjgkzlz) AN (/\ Xjiii = /)
i

F# i j1Fj2, kiFka,h#h

Now F-quantify all variables in S except xgg12 and x1215.
Call the obtained binary relation R'.

It is easy to show that Ry C R’ and that R’ = Ry iff Ry € (A)pp.

Andrei Krokhin A theory of gadget reductions for CSP

Simulation vs. polymorphisms

Theorem (Birkhoff'35; Geiger'68; Bodnarchuk et al.’69; Bodirsky;

Willard; Barto, Opréal,Pinsker'lS)
m A pp-defines B iff Pol(A) C Pol(B).

m A pp-interprets B iff Pol(A) — Pol(B) (homomorphism).
m A pp-constructs B iff Pol(A) --» Pol(B) (height-1 homo).

Remarks:
m Proof constructive = generic reduction CSP(B) ~~ CSP(A)
m { : Pol(A) — Pol(B) iff it “preserves equations/identities”
— This allows applications of deep structural universal algebra

m £ : Pol(A) --» Pol(B) iff it “preserves ... of height 1"

— Not used in resolving Dichotomy Conj, but very important

Andrei Krokhin A theory of gadget reductions for CSP

Algebraic dichotomy (picture not to scale)

pp-constructs

“good” polymorphisms

poly-time solvable CSPs

Constraint
languages

Andrei Krokhin A theory of gadget reductions for CSP

Negative and positive descriptions

For any A, TFAE:
1. A does not pp-construct 3-SAT (or, equivalently, 3-COL)

2. A has a weak near-unanimity polym’m [Maroti,McKenzie'08]
f(y,x,....,x,x) = f(x,y,...,x,x) = ... = (X, %, ..., X, ¥)
3. A has a cyclic polymorphism [Barto,Kozik'12]
f(x1, %2, X3, ..., %n) = F(x2,X3, ..., Xn, X1)
4. A has a Siggers polymorphism [Siggers'09, KMM'14]

f(r,a,r,e)="f(a,r, e, a)

v

Andrei Krokhin A theory of gadget reductions for CSP

Another picture for CSPs

When problems of the form 3-LINp are the key hard problems.

-

~ =

“good” polymorphisms
CSPs of bounded width

Andrei Krokhin A theory of gadget reductions for CSP

How to use “good” polymorphisms

“Good" polymorphisms imply “useful” structure in a CSP.

m Q: How to extract this structure and use it algorithmically?
m A: This varies from case to case.
— sometimes it's DIY, sometimes you need to call a specialist.

A very simple example: For each n, Pol(A) contains f, (of arity n)

such that f(a1, az,...,an) depends only on {a1,az,...,an}.
fn fn fn
1 4 \
(ail s e, alk) €ER
(anl P ank) eR
\
(f,,(all,...,a,,l) s e, fn(alk,...,ank)) €ER

Andrei Krokhin A theory of gadget reductions for CSP

CSPs and polymorphisms

Decision CSP: Can all constraints be satisfied?
Counting CSP: Count the number of solutions
Max CSP: Find a map satisfying max number of constraints

Approx Max CSP: Satisfy ¢ x Opt number of constraints

A

Approx Min CSP: assuming 1 — ¢ fraction of constraints can
be satisfied, find a map satisfying > 1 — g(e) fraction.

6. Promise CSP: given a 3-col graph, find a 6-colouring for it

Each of the above has an appropriate notion of polymorphism

m lack of good polymorphisms = hardness

m good polymorphisms = efficient algorithms

Andrei Krokhin A theory of gadget reductions for CSP

A theory of structured reductions for CSP (high-level view)

[- ”
can simulate

Good properties
useful structure

Constraint
languages

Andrei Krokhin A theory of gadget reductions for CSP

