
A theory of gadget reductions for CSP

Andrei Krokhin

Andrei Krokhin A theory of gadget reductions for CSP

Useful surveys

Much of what is covered in this lecture can be found in survey

Polymorphisms, and how to use them.

L. Barto, A. Krokhin, and R. Willard.

It is written specifically for those without algebra background!

See also the full (open-access) volume of surveys:

The Constraint Satisfaction Problem: Complexity and

Approximability. Editors: A. Krokhin and S. Živný.

Dagstuhl Follow-Ups series, Volume 7, 2017.

http://drops.dagstuhl.de/portals/dfu/index.php?semnr=16027

Andrei Krokhin A theory of gadget reductions for CSP

Constraint Satisfaction Problem (CSP)

Fix finite relational structure A = (A;R1, . . . ,Rn) (aka constraint
language) where each Ri ⊆ Aki or Ri : Aki → {true, false}.

Definition

An instance of CSP(A) is a list of constraints over vars V , e.g.

R1(x , y , z),R1(z , y ,w),R2(z),R3(x ,w),R3(y , y)

where each Ri is from A.

Question: Is there s : V → A satisfying all constraints?

Many other variants, e.g.:

infinite A (but the instance is still finite)

nothing (or something other than relations) is fixed

real-valued functions instead of relations (for optimisation)

many questions other than plain satisfiability
Andrei Krokhin A theory of gadget reductions for CSP

Examples, a conjecture, and a theorem

k-Col: A = ([k]; {6=})
k-NAE: A = ([k]; {(a, b, c) ∈ [k]3 | a 6= b ∨ a 6= c ∨ b 6= c})

— (essentially) k-colouring for 3-uniform hypergraphs

3-Sat: A = ({0, 1}; (x ∨ y ∨ z), (x ∨ y ∨ ¬z), . . .)

Horn 3-Sat: as above, each clause has ≤ 1 unneg var

3-Linp: A = (Zp; x + y + z = 0, x + 2y + 3z = 7, . . .)

Unique Games-k : A = ([k]; {(a, π(a)) | a ∈ [k]}) where π

runs through all permutations on [k].

Conjecture (CSP Dichotomy Conjecture, Feder-Vardi’98)

Every CSP(A) is either in P or NP-complete.

Theorem (Bulatov’17; Zhuk’17)

The above conjecture is true.

Andrei Krokhin A theory of gadget reductions for CSP

A theory of structured reductions for CSP (high-level view)

Constraint
languages

“can simulate”

.

.

Andrei Krokhin A theory of gadget reductions for CSP

Simulation via gadgets

Three (increasingly more general) levels of simulation:

1. primitive positive (pp) definitions (= gadgets, same domain)

Ex.: Let A1 = (A;R), R ternary, and A2 = (A;T , S) be s.t.

T (x) = ∃w R(x ,w , x), S(x , y) = ∃w R(x , y ,w)∧R(w , y , x).

Then an instance of CSP(A2), say

T (y),S(x , y), S(z , x)

can be re-written as an instance of CSP(A1)

R(y ,w1, y), R(x , y ,w2),R(w2, y , x), R(z , x ,w3),R(w3, x , z)

2. pp-interpretations (gadgets, possible change of domain)

3. pp-constructions (the above + use of constants)

Andrei Krokhin A theory of gadget reductions for CSP

Gadget reductions

Take any 2-Sat instance (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ u) ∧ (x ∨ u)

Let R be the set of solutions to it, projected to {y , z , u},
R = {(1, ∗, ∗), (0, 0, 0)}, and let C0 = {(0)}, C1 = {(1)}.

If A = ({0, 1};R,C0,C1) then CSP(A) reduces to 2-Sat.

If I is an instance of CSP(A),

— replace each R(y , z , u) constraint by the above 4 clauses

(using fresh x each time)

— replace each C0(w) by (w ∨ w) and each C1(w) by (w ∨ w).

For the above reduction to work,

we don’t care how big the gadgets are or even what they are

we only need to know that they exist.

Andrei Krokhin A theory of gadget reductions for CSP

Polymorphisms by example

Take any 2-Sat instance (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ u) ∧ (x ∨ u)

Take any three solutions a,b, c to this instance

Apply the ternary majority operation m to a,b, c

coordinate-wise (variables ordered here as x , y , z , u)

m m m m

↓ ↓ ↓ ↓
a = (1 1 1 0) sat

b = (1 1 0 1) sat

c = (1 0 0 0) sat

m(a,b, c) = (1 1 0 0) sat

Andrei Krokhin A theory of gadget reductions for CSP

Polymorphisms

An operation f : Am → A is called a polymorphism of a k-ary
relation R ⊆ Ak if, for any m × k matrix with rows in R,

f f f
↓ ↓ ↓

(a11 , . . . , a1k) ∈ R
...

...
...

...
(am1 , . . . , amk) ∈ R

⇓
(f (a11, . . . , am1) , . . . , f (a1k , . . . , amk)) ∈ R

Call f a polymorphism of A if it is such for all R in A.
Notation: Pol(A).

Andrei Krokhin A theory of gadget reductions for CSP

More examples of polymorphisms

1. Consider R(x , y , z) = x̄ ∨ ȳ ∨ z and binary ops max and min

1 0 0 ∈ R

0 1 0 ∈ R

1 1 0 6∈ R

? ? ? ∈ R

? ? ? ∈ R

1 1 0 6∈ R

2. Every polymorphism of 3-SAT is a projection (aka dictator),

i.e. f (x1, . . . , xn) = xi for some i .

3. Every polymorphism of 3-Col is of the form

f (x1, . . . , xn) = π(xi) for some i ≤ n and permutation π

4. If A = (A,E) is a digraph then f is a polymorphism of A if

(a1, b1), . . . , (an, bn) ∈ E ⇒ (f (a1, . . . , an), f (b1, . . . , bn)) ∈ E .

In other words, f is simply a homomorphism from An to A.

Andrei Krokhin A theory of gadget reductions for CSP

A Galois connection

Notation:

Let 〈A〉pp be the set of all relations pp-definable in A (and =).

Pol(A) is the set of all polymorphisms of A.

For a set C of operations on A, Inv(C) = {R | C ⊆ Pol(R)}

Theorem (Geiger’68; Bodnarchuk et al.’69)

For every A, we have 〈A〉pp = Inv(Pol(A)).

In words, “pp-definable in A” = “breaks no polymorphisms of A”.

Polymorphisms of A precisely control what A can pp-define.

Andrei Krokhin A theory of gadget reductions for CSP

Clones

For any A, Pol(A) is a clone.

Clone = set C of multivariate functions on a set A such that

1. C is closed under composition, and

2. C contains all projections/dictators (f (x1, . . . , xn) = xi)

Examples of clones:

trivial clone T , consisting of all projections.

all linear functions (wrt some fixed ring)

all monotone functions (wrt some fixed partial order)

When |A| = 2, all clones have been described [Post’1921].

For |A| > 2, there is no hope to get a complete description.

Andrei Krokhin A theory of gadget reductions for CSP

How to find gadgets (even though you don’t have to)

Natural questions: Given a structure A and a relation R0:

1. How do you check whether R0 ∈ 〈A〉pp?

2. If this holds, how do you find an actual gadget?

Answer: There is a generic way, via polymorphisms.

R0 ∈ 〈A〉pp iff R0 is preserved by all f ∈ Pol(A) of arity |R0|.
There is an algorithm that solves both (1) and (2) [CJG’99]

— it puts problem (1) in complexity class coNEXPTIME.

— For Boolean CSPs, both (1) and (2) are P [Dalmau’00]

— For some d > 1, (1) is coNEXPTIME-complete for A with a

d-element domain [Willard’10].

— The previous claim is open, if one fixes A (not just its domain).

Andrei Krokhin A theory of gadget reductions for CSP

The algorithm, by example

A = ({0, 1, 2}, 6=,C0,C1,C2) and R0 = {(0, 1), (0, 2), (1, 1), (2, 2)}.

Idea: represent polymorphisms f ∈ A of arity 4 as a 34-ary relation

S = {(f (0000), f (0001), f (0002), . . . , f (2222)) | 4-ary f ∈ Pol(A)}.

We have S ∈ 〈A〉pp: one can define S(x0000, . . . , x2222) as

(
∧

i1 6=i2,j1 6=j2,k1 6=k2,l1 6=l2

xi1j1k1l1 6= xi2j2k2l2) ∧ (
∧
i

xiiii = i)

Now ∃-quantify all variables in S except x0012 and x1212.
Call the obtained binary relation R ′.

It is easy to show that R0 ⊆ R ′ and that R ′ = R0 iff R0 ∈ 〈A〉pp.

Andrei Krokhin A theory of gadget reductions for CSP

Simulation vs. polymorphisms

Theorem (Birkhoff’35; Geiger’68; Bodnarchuk et al.’69; Bodirsky;

Willard; Barto, Opřsal,Pinsker’18)

A pp-defines B iff Pol(A) ⊆ Pol(B).

A pp-interprets B iff Pol(A)→ Pol(B) (homomorphism).

A pp-constructs B iff Pol(A) 99K Pol(B) (height-1 homo).

Remarks:

Proof constructive ⇒ generic reduction CSP(B) CSP(A)

ξ : Pol(A)→ Pol(B) iff it “preserves equations/identities”

— This allows applications of deep structural universal algebra

ξ : Pol(A) 99K Pol(B) iff it “preserves ... of height 1”

— Not used in resolving Dichotomy Conj, but very important

Andrei Krokhin A theory of gadget reductions for CSP

Algebraic dichotomy (picture not to scale)

Constraint
languages

3-Sat

pp-constructs

“good” polymorphisms

poly-time solvable CSPs

Andrei Krokhin A theory of gadget reductions for CSP

Negative and positive descriptions

Theorem

For any A, TFAE:

1. A does not pp-construct 3-Sat (or, equivalently, 3-Col)

2. A has a weak near-unanimity polym’m [Mároti,McKenzie’08]

f (y , x , . . . , x , x) = f (x , y , . . . , x , x) = . . . = f (x , x , . . . , x , y)

3. A has a cyclic polymorphism [Barto,Kozik’12]

f (x1, x2, x3, . . . , xn) = f (x2, x3, . . . , xn, x1)

4. A has a Siggers polymorphism [Siggers’09,KMM’14]

f (r , a, r , e) = f (a, r , e, a)

Andrei Krokhin A theory of gadget reductions for CSP

Another picture for CSPs

When problems of the form 3-Linp are the key hard problems.

3-Lin2 3-Lin3 3-Linp

.

“good” polymorphisms

CSPs of bounded width

Andrei Krokhin A theory of gadget reductions for CSP

How to use “good” polymorphisms

“Good” polymorphisms imply “useful” structure in a CSP.

Q: How to extract this structure and use it algorithmically?

A: This varies from case to case.

— sometimes it’s DIY, sometimes you need to call a specialist.

A very simple example: For each n, Pol(A) contains fn (of arity n)
such that f (a1, a2, . . . , an) depends only on {a1, a2, . . . , an}.

fn fn fn
↓ ↓ ↓

(a11 , . . . , a1k) ∈ R
...

...
...

...
(an1 , . . . , ank) ∈ R

⇓
(fn(a11, . . . , an1) , . . . , fn(a1k , . . . , ank)) ∈ R

Andrei Krokhin A theory of gadget reductions for CSP

CSPs and polymorphisms

1. Decision CSP: Can all constraints be satisfied?

2. Counting CSP: Count the number of solutions

3. Max CSP: Find a map satisfying max number of constraints

4. Approx Max CSP: Satisfy c ×Opt number of constraints

5. Approx Min CSP: assuming 1− ε fraction of constraints can

be satisfied, find a map satisfying ≥ 1− g(ε) fraction.

6. Promise CSP: given a 3-col graph, find a 6-colouring for it

Each of the above has an appropriate notion of polymorphism

lack of good polymorphisms ⇒ hardness

good polymorphisms ⇒ efficient algorithms

Andrei Krokhin A theory of gadget reductions for CSP

A theory of structured reductions for CSP (high-level view)

Constraint
languages

“can simulate”
3-Sat

.

.

Good properties
useful structure

Andrei Krokhin A theory of gadget reductions for CSP

