A theory of gadget reductions for CSP

Andrei Krokhin

Andrei Krokhin [A theory of gadget reductions for CSP](#page-20-0)

Useful surveys

Much of what is covered in this lecture can be found in survey

- **Polymorphisms, and how to use them.**
	- L. Barto, A. Krokhin, and R. Willard.

It is written specifically for those without algebra background!

See also the full (open-access) volume of surveys:

■ The Constraint Satisfaction Problem: Complexity and Approximability. Editors: A. Krokhin and S. Živný. Dagstuhl Follow-Ups series, Volume 7, 2017. http://drops.dagstuhl.de/portals/dfu/index.php?semnr=16027 Constraint Satisfaction Problem (CSP)

Fix finite relational structure $\mathbb{A} = (A; R_1, \ldots, R_n)$ (aka constraint language) where each $R_i \subseteq A^{k_i}$ or $R_i : A^{k_i} \rightarrow \{\text{true}, \text{false}\}.$

Definition

An instance of $CSP(A)$ is a list of constraints over vars V , e.g.

 $R_1(x, y, z), R_1(z, y, w), R_2(z), R_3(x, w), R_3(y, y)$

where each R_i is from \mathbb{A} . Question: Is there $s: V \rightarrow A$ satisfying all constraints?

Many other variants, e.g.:

- \blacksquare infinite A (but the instance is still finite)
- nothing (or something other than relations) is fixed
- \blacksquare real-valued functions instead of relations (for optimisation)
- \blacksquare many questions other than plain satisfiability

Examples, a conjecture, and a theorem

\n- **a**
$$
k
$$
-COL: $\mathbb{A} = ([k]; \{\neq\})$
\n- **a** k -NAE: $\mathbb{A} = ([k]; \{(a, b, c) \in [k]^3 \mid a \neq b \lor a \neq c \lor b \neq c\})$
\n- **b** $-$ (essentially) k -colouring for 3-uniform hypergraphs
\n- **a** 3-SAT: $\mathbb{A} = (\{0, 1\}; (x \lor y \lor z), (x \lor y \lor \neg z), \ldots)$
\n- **b a b c d d e e f f f g g h h h h h h h h h h h h h h h i j k k k j n i i j n j k k k j k k k k j k k j k k j k k k j k k k j k k k j k k j k k k j k k k j k k k j k k k k**

runs through all permutations on $|k|$.

Conjecture (CSP Dichotomy Conjecture, Feder-Vardi'98)

Every $CSP(A)$ is either in **P** or **NP**-complete.

Theorem (Bulatov'17; Zhuk'17)

The above conjecture is true.

A theory of structured reductions for CSP (high-level view)

Simulation via gadgets

Three (increasingly more general) levels of simulation:

1. primitive positive (pp) definitions (= gadgets, same domain) Ex.: Let $\mathbb{A}_1 = (A; R)$, R ternary, and $\mathbb{A}_2 = (A; T, S)$ be s.t. $T(x) = \exists w R(x, w, x), S(x, y) = \exists w R(x, y, w) \wedge R(w, y, x).$ Then an instance of $CSP(A₂)$, say

 $T(y)$, $S(x, y)$, $S(z, x)$

can be re-written as an instance of $CSP(A_1)$

 $R(y, w_1, y)$, $R(x, y, w_2)$, $R(w_2, y, x)$, $R(z, x, w_3)$, $R(w_3, x, z)$

- 2. pp-interpretations (gadgets, possible change of domain)
- 3. pp-constructions (the above $+$ use of constants)

Gadget reductions

- **■** Take any 2-SAT instance $(x \vee \overline{y}) \wedge (y \vee \overline{z}) \wedge (y \vee \overline{u}) \wedge (x \vee u)$
- Let R be the set of solutions to it, projected to $\{y, z, u\}$,
	- $R = \{(1, *, *,), (0, 0, 0)\}\$, and let $C_0 = \{(0)\}\$, $C_1 = \{(1)\}\$.
- If $A = (\{0, 1\}; R, C_0, C_1)$ then $CSP(A)$ reduces to 2-SAT.
- If I is an instance of $CSP(A)$,
	- replace each $R(y, z, u)$ constraint by the above 4 clauses (using fresh x each time)
	- replace each $C_0(w)$ by $(\overline{w} \vee \overline{w})$ and each $C_1(w)$ by $(w \vee w)$.

For the above reduction to work,

- we don't care how big the gadgets are or even what they are
- we only need to know that they exist.

Polymorphisms by example

- **■** Take any 2-SAT instance $(x \vee \overline{y}) \wedge (y \vee \overline{z}) \wedge (y \vee \overline{u}) \wedge (x \vee u)$
- **Take any three solutions** a, b, c **to this instance**
- Apply the ternary *majority* operation m to a, b, c coordinate-wise (variables ordered here as x, y, z, u)

Polymorphisms

An operation $f : A^m \to A$ is called a polymorphism of a *k*-ary relation $R \subseteq A^k$ if, for any $m \times k$ matrix with rows in $R,$

Call f a polymorphism of $\mathbb A$ if it is such for all R in $\mathbb A$. Notation: Pol(A).

More examples of polymorphisms

1. Consider $R(x, y, z) = \overline{x} \vee \overline{y} \vee z$ and binary ops max and min

- 2. Every polymorphism of 3-SAT is a projection (aka dictator), i.e. $f(x_1,\ldots,x_n)=x_i$ for some *i*.
- 3. Every polymorphism of 3-COL is of the form $f(x_1, \ldots, x_n) = \pi(x_i)$ for some $i \leq n$ and permutation π 4. If $A = (A, E)$ is a digraph then f is a polymorphism of A if $(a_1, b_1), \ldots, (a_n, b_n) \in E \Rightarrow (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in E.$ In other words, f is simply a homomorphism from \mathbb{A}^n to \mathbb{A} .

A Galois connection

Notation:

Let $\langle A \rangle_{\rho\rho}$ be the set of all relations pp-definable in A (and =).

 \blacksquare Pol($\mathbb A$) is the set of all polymorphisms of $\mathbb A$.

For a set C of operations on A, $Inv(C) = \{R \mid C \subseteq Pol(R)\}\$

Theorem (Geiger'68; Bodnarchuk et al.'69)

For every \mathbb{A} , we have $\langle \mathbb{A} \rangle_{\text{op}} = \text{Inv}(\text{Pol}(\mathbb{A})).$

In words, "pp-definable in \mathbb{A} " = "breaks no polymorphisms of \mathbb{A} ".

 \blacksquare Polymorphisms of $\mathbb A$ precisely control what $\mathbb A$ can pp-define.

Clones

For any A , $Pol(A)$ is a clone.

Clone $=$ set C of multivariate functions on a set A such that

1. C is closed under composition, and

2. C contains all projections/dictators $(f(x_1, ..., x_n) = x_i)$ Examples of clones:

- **trivial clone T**, consisting of all projections.
- all linear functions (wrt some fixed ring)
- **all monotone functions (wrt some fixed partial order)**
- When $|A| = 2$, all clones have been described [Post'1921].
- For $|A| > 2$, there is no hope to get a complete description.

How to find gadgets (even though you don't have to)

Natural questions: Given a structure A and a relation R_0 :

1. How do you check whether $R_0 \in \langle A \rangle_{\text{op}}$?

2. If this holds, how do you find an actual gadget? Answer: There is a generic way, via polymorphisms.

- **R**₀ \in $\langle \mathbb{A} \rangle_{\text{op}}$ iff R_0 is preserved by all $f \in \text{Pol}(\mathbb{A})$ of arity $|R_0|$.
- \blacksquare There is an algorithm that solves both (1) and (2) [CJG'99]
	- it puts problem (1) in complexity class **coNEXPTIME**.
	- For Boolean CSPs, both (1) and (2) are P [Dalmau'00]
	- For some $d > 1$, (1) is **coNEXPTIME**-complete for A with a d-element domain [Willard'10].
	- The previous claim is open, if one fixes A (not just its domain).

The algorithm, by example

 $A = (\{0, 1, 2\}, \ne, C_0, C_1, C_2)$ and $R_0 = \{(0, 1), (0, 2), (1, 1), (2, 2)\}.$

Idea: represent polymorphisms $f \in \mathbb{A}$ of arity 4 as a 3⁴-ary relation $S = \{ (f(0000), f(0001), f(0002), \dots, f(2222)) \mid 4\text{-ary } f \in \text{Pol}(\mathbb{A}) \}.$ We have $S \in \langle A \rangle_{\text{op}}$: one can define $S(x_{0000}, \ldots, x_{2222})$ as \wedge $i_1\neq i_2,j_1\neq j_2,k_1\neq k_2,l_1\neq l_2$ $x_{i_1j_1k_1l_1} \neq x_{i_2j_2k_2l_2} \big) \ \wedge \ \big(\bigwedge$ i $x_{iiii} = i$

Now \exists -quantify all variables in S except x_{0012} and x_{1212} . Call the obtained binary relation R' .

It is easy to show that $R_0 \subseteq R'$ and that $R' = R_0$ iff $R_0 \in \langle A \rangle_{\rho\rho}$.

Simulation vs. polymorphisms

Theorem (Birkhoff'35; Geiger'68; Bodnarchuk et al.'69; Bodirsky; Willard; Barto, Opršal, Pinsker'18)

- A pp-defines $\mathbb B$ iff $\mathrm{Pol}(\mathbb A) \subseteq \mathrm{Pol}(\mathbb B)$.
- A pp-interprets $\mathbb B$ iff $\mathrm{Pol}(\mathbb A) \to \mathrm{Pol}(\mathbb B)$ (homomorphism).
- A pp-constructs $\mathbb B$ iff $\text{Pol}(\mathbb A) \dashrightarrow \text{Pol}(\mathbb B)$ (height-1 homo).

Remarks:

- Proof constructive \Rightarrow generic reduction $CSP(\mathbb{B}) \rightsquigarrow CSP(\mathbb{A})$
- $\mathbf{F} \in \mathcal{E} : \text{Pol}(\mathbb{A}) \to \text{Pol}(\mathbb{B})$ iff it "preserves equations/identities"
	- This allows applications of deep structural universal algebra
- $\bullet \in \mathcal{E} : \text{Pol}(\mathbb{A}) \dashrightarrow \text{Pol}(\mathbb{B})$ iff it "preserves ... of height 1"
	- Not used in resolving Dichotomy Conj, but very important

Algebraic dichotomy (picture not to scale)

Negative and positive descriptions

Theorem

For any A, TFAE:

- 1. A does not pp-construct 3-SAT (or, equivalently, 3-Col)
- 2. A has a weak near-unanimity polym'm [Mároti,McKenzie'08]

$$
f(y,x,\ldots,x,x)=f(x,y,\ldots,x,x) = \ldots = f(x,x,\ldots,x,y)
$$

3. A has a cyclic polymorphism [Barto,Kozik'12]

$$
f(x_1, x_2, x_3, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1)
$$

4. A has a Siggers polymorphism [Siggers'09, KMM'14]

$$
f(r,a,r,e)=f(a,r,e,a)
$$

Another picture for CSPs

When problems of the form 3-LINp are the key hard problems.

How to use "good" polymorphisms

"Good" polymorphisms imply "useful" structure in a CSP.

 \blacksquare Q: How to extract this structure and use it algorithmically?

A: This varies from case to case.

— sometimes it's DIY, sometimes you need to call a specialist.

A very simple example: For each n, $Pol(A)$ contains f_n (of arity n) such that $f(a_1, a_2, \ldots, a_n)$ depends only on $\{a_1, a_2, \ldots, a_n\}$.

CSPs and polymorphisms

- 1. Decision CSP: Can all constraints be satisfied?
- 2. Counting CSP: Count the number of solutions
- 3. Max CSP: Find a map satisfying max number of constraints
- 4. Approx Max CSP: Satisfy $c \times$ Opt number of constraints
- 5. Approx Min CSP: assuming 1ϵ fraction of constraints can be satisfied, find a map satisfying $> 1 - g(\epsilon)$ fraction.
- 6. Promise CSP: given a 3-col graph, find a 6-colouring for it

Each of the above has an appropriate notion of polymorphism

- **■** lack of good polymorphisms \Rightarrow hardness
- good polymorphisms \Rightarrow efficient algorithms

A theory of structured reductions for CSP (high-level view)

