
Constraint Satisfaction and fixed-parameter tractability

Dániel Marx

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

Workshop on Parameterized Algorithms and Constraint Satisfaction (PACS 2024)
Tallinn, Estonia

July 7, 2024

1

Reactions to FPT

Typical graph algorithms researcher:

Hmm... Is my favorite graph problem FPT parameterized by the size of the
solution/number of objects/etc. ?

Typical CSP researcher:

Sat is trivially FPT parameterized by the number of variables.
So why should I care?

2

Reactions to FPT

Typical graph algorithms researcher:

Hmm... Is my favorite graph problem FPT parameterized by the size of the
solution/number of objects/etc. ?

Typical CSP researcher:

Sat is trivially FPT parameterized by the number of variables.
So why should I care?

2

Parameterizing Sat

Trivial: 3Sat is FPT parameterized by the number of variables
(e.g., 2k · nO(1) time algorithm).

Trivial: 3Sat is FPT parameterized by the number of clauses
(e.g., 23k · nO(1) time algorithm).

What about Sat parameterized by the number k of clauses?

3

Parameterizing Sat

Trivial: 3Sat is FPT parameterized by the number of variables
(e.g., 2k · nO(1) time algorithm).

Trivial: 3Sat is FPT parameterized by the number of clauses
(e.g., 23k · nO(1) time algorithm).

What about Sat parameterized by the number k of clauses?

Algorithm 1: Problem kernel

If a clause has more than k literals: can be ignored, removing it does not make the
problem any easier.
If every clause has at most k literals: there are at most k2 variables, use brute
force.

3

Parameterizing Sat

Trivial: 3Sat is FPT parameterized by the number of variables
(e.g., 2k · nO(1) time algorithm).

Trivial: 3Sat is FPT parameterized by the number of clauses
(e.g., 23k · nO(1) time algorithm).

What about Sat parameterized by the number k of clauses?

Algorithm 2: Bounded search tree

Pick a variable occuring both positively and negatively,
branch on setting it to 0 or 1.
In both branches, the number of clauses strictly decreases
⇒ search tree of size 2k .

3

Max Sat

Max Sat: Given a formula, satisfy at least k clauses.
Polynomial for fixed k : guess the k clauses, use the previous algorithm to check if
they are satisfiable.
Is the problem FPT?

YES: If there are at least 2k clauses, a random assignment satisfies k clauses on
average. Otherwise, use the previous algorithm.

This is not very insightful, can we say anything more interesting?

4

Max Sat

Max Sat: Given a formula, satisfy at least k clauses.
Polynomial for fixed k : guess the k clauses, use the previous algorithm to check if
they are satisfiable.
Is the problem FPT?
YES: If there are at least 2k clauses, a random assignment satisfies k clauses on
average. Otherwise, use the previous algorithm.

This is not very insightful, can we say anything more interesting?

4

Above average Max Sat

m/2 satisfiable clauses are guaranteed. But can we satisfy m/2 + k clauses?

Above average Max Sat (satisfy m/2 + k clauses) is FPT [Mahajan and Raman
1999]

Above average Max r-Sat (satisfy (1 − 1/2r)m + k clauses) is FPT [Alon et
al. 2010]

Satisfying
∑m

i=1(1 − 1/2ri) + k clauses is NP-hard for k = 2 [Crowston et al. 2012]

Above average Max r-Lin-2 (satisfy m/2 + k linear equations) is FPT [Gutin et
al. 2010]

Permutation CSPs such as Maximum Acyclic Subgraph and Betweenness
[Gutin et al. 2010].
. . .

5

Above average Max Sat

m/2 satisfiable clauses are guaranteed. But can we satisfy m/2 + k clauses?
Above average Max Sat (satisfy m/2 + k clauses) is FPT [Mahajan and Raman
1999]

Above average Max r-Sat (satisfy (1 − 1/2r)m + k clauses) is FPT [Alon et
al. 2010]

Satisfying
∑m

i=1(1 − 1/2ri) + k clauses is NP-hard for k = 2 [Crowston et al. 2012]

Above average Max r-Lin-2 (satisfy m/2 + k linear equations) is FPT [Gutin et
al. 2010]

Permutation CSPs such as Maximum Acyclic Subgraph and Betweenness
[Gutin et al. 2010].
. . .

5

Boolean constraint satisfaction problems

Let Γ be a set of Boolean relations. A Γ-formula is a conjunction of relations in Γ:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

SAT(Γ)
Given: an Γ-formula φ

Find: a variable assignment satisfying φ

Γ = {a ̸= b} ⇒ SAT(Γ) = 2-coloring of a graph
Γ = {a ∨ b, a ∨ b̄, ā ∨ b̄} ⇒ SAT(Γ) = 2SAT
Γ = {a ∨ b ∨ c , a ∨ b ∨ c̄ , a ∨ b̄ ∨ c̄ , ā ∨ b̄ ∨ c̄} ⇒ SAT(Γ) = 3SAT

Question: SAT(Γ) is polynomial time solvable for which Γ?
It is NP-complete for which Γ?

6

Boolean constraint satisfaction problems

Let Γ be a set of Boolean relations. A Γ-formula is a conjunction of relations in Γ:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

SAT(Γ)
Given: an Γ-formula φ

Find: a variable assignment satisfying φ

Γ = {a ̸= b} ⇒ SAT(Γ) = 2-coloring of a graph
Γ = {a ∨ b, a ∨ b̄, ā ∨ b̄} ⇒ SAT(Γ) = 2SAT
Γ = {a ∨ b ∨ c , a ∨ b ∨ c̄ , a ∨ b̄ ∨ c̄ , ā ∨ b̄ ∨ c̄} ⇒ SAT(Γ) = 3SAT

Question: SAT(Γ) is polynomial time solvable for which Γ?
It is NP-complete for which Γ?

6

Schaefer’s Dichotomy Theorem (1978)

Theorem [Schaefer 1978]
For every Γ, the SAT(Γ) problem is polynomial-time solvable if one of the following
holds, and NP-complete otherwise:

Every relation is satisfied by the all 0 assignment
Every relation is satisfied by the all 1 assignment
Every relation can be expressed by a 2SAT formula
Every relation can be expressed by a Horn formula
Every relation can be expressed by an anti-Horn formula
Every relation is an affine subspace over GF(2)

This is surprising for two reasons:
this family does not contain NP-intermediate problems and
the boundary of polynomial-time and NP-hard problems can be cleanly
characterized.

7

Schaefer’s Dichotomy Theorem (1978)

Theorem [Schaefer 1978]
For every Γ, the SAT(Γ) problem is polynomial-time solvable if one of the following
holds, and NP-complete otherwise:

Every relation is satisfied by the all 0 assignment
Every relation is satisfied by the all 1 assignment
Every relation can be expressed by a 2SAT formula
Every relation can be expressed by a Horn formula
Every relation can be expressed by an anti-Horn formula
Every relation is an affine subspace over GF(2)

This is surprising for two reasons:
this family does not contain NP-intermediate problems and
the boundary of polynomial-time and NP-hard problems can be cleanly
characterized.

7

Other dichotomy results

Max-Sat, Min-Unsat [Khanna et al. 2001][Creignou 1995]

MaxOnes-Sat, MinOnes-Sat [Khanna et al. 2001]

Inverse satisfiability [Kavvadias and Sideri 1999]

#Sat [Creignou and Hermann 1996]

. . .

The understanding of Boolean constraints
given by Post’s Lattice often helps a lot.

8

Other dichotomy results

Max-Sat, Min-Unsat [Khanna et al. 2001][Creignou 1995]

MaxOnes-Sat, MinOnes-Sat [Khanna et al. 2001]

Inverse satisfiability [Kavvadias and Sideri 1999]

#Sat [Creignou and Hermann 1996]

. . .

The understanding of Boolean constraints
given by Post’s Lattice often helps a lot.

8

Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the
variables,
domain of the variables,
constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

Examples:
3Sat: 2-element domain, every constraint is ternary
Vertex Coloring: domain is the set of colors, binary constraints
k-Clique (in graph G): k variables, domain is the vertices of G ,

(k
2

)
binary

constraints

9

Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the
variables,
domain of the variables,
constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

Examples:
3Sat: 2-element domain, every constraint is ternary
Vertex Coloring: domain is the set of colors, binary constraints
k-Clique (in graph G): k variables, domain is the vertices of G ,

(k
2

)
binary

constraints

9

Dichotomies for CSP

CSP over a domain of size 3 [Bulatov 2002]
CSP over arbitrary finite domain [Bulatov 2017][Zhuk 2017]

Was the Feder-Vardi conjecture!

MaxCSP with fixed-valued constraints [Deineko et al. 2008]

Finite-Valued VCSP [Thapper and Zivný 2013]

General-Valued VCSP [Kolmogorov et al. 2015]

#CSP [Bulatov 2008]

#CSP approximation [Chen et al. 2013]

. . .

Many different versions of Sat and CSP can be studied from the viewpoint of
polynomial-time algorithms and dichotomy results can be expected.

10

Dichotomies for CSP

CSP over a domain of size 3 [Bulatov 2002]
CSP over arbitrary finite domain [Bulatov 2017][Zhuk 2017]

Was the Feder-Vardi conjecture!

MaxCSP with fixed-valued constraints [Deineko et al. 2008]

Finite-Valued VCSP [Thapper and Zivný 2013]

General-Valued VCSP [Kolmogorov et al. 2015]

#CSP [Bulatov 2008]

#CSP approximation [Chen et al. 2013]

. . .

Many different versions of Sat and CSP can be studied from the viewpoint of
polynomial-time algorithms and dichotomy results can be expected.

10

Weighted problems

Parameterizing by the weight (= number of 1s) of the solution.
MinOnes-Sat(Γ) :
Find a satisfying assignment with weight at most k
ExactOnes-Sat(Γ) :
Find a satisfying assignment with weight exactly k

MaxOnes-Sat(Γ) :
Find a satisfying assignment with weight at least k

The first two problems can be always solved in nO(k) time, and the third one as well if
Sat(Γ) is in P (and Γ is closed under substituting constants).

Goal: Characterize which languages Γ make these problems FPT.

11

ExactOnes-Sat(Γ)

Theorem [Marx 2004]

ExactOnes-Sat(Γ) is FPT if Γ is weakly separable and W[1]-hard otherwise.

Examples of weakly separable constraints:
affine constraints
“0 or 5 out of 8”

Examples of not weakly separable constraints:
(¬x ∨ ¬y)
x → y

“0 or 4 out of 8”

12

ExactOnes-Sat(Γ)
A more fine-grained characterization: what can be the exponent in the W[1]-hard
cases?

Charaterization by [Künnemann and Marx 2020]:
FPT regime
Subexponential regime

f (k)nO(
√
k) algorithm

no f (k)no(
3√
k) algorithm assuming the Exponential-Time Hypothesis (ETH)

Clique regime
f (k)n(ω/3)k+O(1) algorithm
no f (k)n(ω/3−ϵ)+O(1) algorithm

Brute-force regime:
can be solved in nk+O(1) time
no f (k)n(1−ϵ)k+O(1) algorithm assuming the 3-uniform k-HyperClique
conjecture.

13

ExactOnes-Sat(Γ)
A more fine-grained characterization: what can be the exponent in the W[1]-hard
cases?

Charaterization by [Künnemann and Marx 2020]:
FPT regime
Subexponential regime

f (k)nO(
√
k) algorithm

no f (k)no(
3√
k) algorithm assuming the Exponential-Time Hypothesis (ETH)

Clique regime
f (k)n(ω/3)k+O(1) algorithm
no f (k)n(ω/3−ϵ)+O(1) algorithm

Brute-force regime:
can be solved in nk+O(1) time
no f (k)n(1−ϵ)k+O(1) algorithm assuming the 3-uniform k-HyperClique
conjecture.

13

MinOnes-Sat(Γ)
The bounded-search tree algorithm for Vertex Cover can be generalized to
MinOnes-Sat.

Observation
MinOnes-Sat(Γ) is FPT for every finite Γ.

But can we solve the problem simply by preprocessing?

Definition
A polynomial kernel is a polynomial-time reduction creating an equivalent instance
whose size is polynomial in k .

Goal: Characterize the languages Γ for which MinOnes-Sat(Γ) has a polynomial
kernel.
Example: the special case d-Hitting Set (where Γ contains only R = x1 ∨ · · · ∨ xd)
has a polynomial kernel (“Sunflower reduction”)

14

MinOnes-Sat(Γ)
The bounded-search tree algorithm for Vertex Cover can be generalized to
MinOnes-Sat.

Observation
MinOnes-Sat(Γ) is FPT for every finite Γ.

But can we solve the problem simply by preprocessing?

Definition
A polynomial kernel is a polynomial-time reduction creating an equivalent instance
whose size is polynomial in k .

Goal: Characterize the languages Γ for which MinOnes-Sat(Γ) has a polynomial
kernel.
Example: the special case d-Hitting Set (where Γ contains only R = x1 ∨ · · · ∨ xd)
has a polynomial kernel (“Sunflower reduction”)

14

Dichotomy for kernelization

Kernelization for general MinOnes-Sat(Γ) generalizes the sunflower reduction, and
requires that Γ is “mergeable.”

Theorem [Kratsch and Wahlström 2010]

(1) If MinOnes-Sat(Γ) is polynomial-time solvable or Γ is mergeable, then
MinOnes-Sat(Γ) has a polynomial kernelization.

(2) If MinOnes-Sat(Γ) is NP-hard and Γ is not mergebable, then MinOnes-Sat(Γ)
does not have a polynomial kernel, unless the polynomial hierarchy collapses.

15

Dichotomy for kernelization

Similar results for other problems:

Theorem [Kratsch, M., Wahlström 2010]

If Γ has property X , then MaxOnes-Sat(Γ) has a polynomial kernel, and
otherwise no (unless the polynomial hierarchy collapses).
If Γ has property Y , then ExactOnes-Sat(Γ) has a polynomial kernel, and
otherwise no (unless the polynomial hierarchy collapses).

16

Larger domains

What is the generalization of ExactOnes-Sat(Γ) to larger domains?
1 Find a solution with exactly k nonzero values

(zeros constraint).
2 Find a solution where nonzero value i appears exactly ki times (cardinality

constraint).

Theorem [Bulatov and M. 2011]

For every Γ closed under substituting constants, CSP(Γ) with zeros constraint is FPT or
W[1]-hard.

17

Larger domains

The following two problems are equivalent:
CSP(Γ) with cardinality constraint, where Γ contains only the relation
R = {00, 10, 02}.
Biclique: Find a complete bipartite graph with k vertices on each side. The
fixed-parameter tractability of Biclique was a notorious open problem.

18

Larger domains

The following two problems are equivalent:
CSP(Γ) with cardinality constraint, where Γ contains only the relation
R = {00, 10, 02}.
Biclique: Find a complete bipartite graph with k vertices on each side. The
fixed-parameter tractability of Biclique was a notorious open problem.

Theorem [Bulatov and M. 2011]

For every Γ closed under substituting constants, CSP(Γ) with cardinality constraint is
FPT or Biclique-hard.

Theorem [Lin 2015]

Biclique is W[1]-hard.

18

Larger domains

The following two problems are equivalent:
CSP(Γ) with cardinality constraint, where Γ contains only the relation
R = {00, 10, 02}.
Biclique: Find a complete bipartite graph with k vertices on each side. The
fixed-parameter tractability of Biclique was a notorious open problem.

Theorem [Bulatov and M. 2011][Lin 2015]

For every Γ closed under substituting constants, CSP(Γ) with cardinality constraint is
FPT or W[1]-hard.

18

MinUnSat and graph problems

CSP over a fixed domain D:
Satisfying at least k constraints is always FPT: a random assingment satisfies a
linear fraction of the constraints.
Satisfying all but at most k constaints: can be challanging and can model
important graph problems.

Some problems of interest:
Edge Bipartization: D = {0, 1}, Γ = {̸=}
Almost 2Sat: D = {0, 1}, Γ = {a ∨ b, a ∨ b̄, ā ∨ b̄}:
t-Terminal Multiway Cut: D = {1, . . . , t}, Γ = {=}:
Directed Feedback Vertex Set and Multicut can be reduced to such
problems.

19

MinUnSat and graph problems

CSP over a fixed domain D:
Satisfying at least k constraints is always FPT: a random assingment satisfies a
linear fraction of the constraints.
Satisfying all but at most k constaints: can be challanging and can model
important graph problems.

Some problems of interest:
Edge Bipartization: D = {0, 1}, Γ = {̸=}
Almost 2Sat: D = {0, 1}, Γ = {a ∨ b, a ∨ b̄, ā ∨ b̄}:
t-Terminal Multiway Cut: D = {1, . . . , t}, Γ = {=}:
Directed Feedback Vertex Set and Multicut can be reduced to such
problems.

19

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local search

Local search
Walk in the solution space by iteratively replacing the current solution with a better
solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local
neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

20

Local neighborhood

The local neighborhood is defined in a problem-specific way:
For TSP, the neighbors are obtained by swapping 2 cities or replacing 2 edges.
For a problem with 0-1 variables, the neighbors are obtained by flipping a single
variable.
For subgraph problems, the neighbors are obtained by adding/removing one edge.

More generally: reordering k cities, flipping k variables, etc.

Larger neighborhood (larger k):
algorithm is less likely to get stuck in a local optimum,
it is more difficult to check if there is a better solution in the neighborhood.

21

Local neighborhood

The local neighborhood is defined in a problem-specific way:
For TSP, the neighbors are obtained by swapping 2 cities or replacing 2 edges.
For a problem with 0-1 variables, the neighbors are obtained by flipping a single
variable.
For subgraph problems, the neighbors are obtained by adding/removing one edge.

More generally: reordering k cities, flipping k variables, etc.

Larger neighborhood (larger k):
algorithm is less likely to get stuck in a local optimum,
it is more difficult to check if there is a better solution in the neighborhood.

21

Searching the neighborhood

Question: Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

k-step Local Search

Input: instance I , solution x , integer k
Find: A solution x ′ with dist(x , x ′) ≤ k that is “better” than x .

Remark 1: If the optimization problem is hard, then it is unlikely that this local search
problem is polynomial-time solvable: otherwise we would be able to find an optimum
solution.

Remark 2: Size of the k-neighborhood is usually nO(k) ⇒ local search is
polynomial-time solvable for every fixed k , but this is not practical for larger k .

22

Searching the neighborhood

Question: Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

k-step Local Search

Input: instance I , solution x , integer k
Find: A solution x ′ with dist(x , x ′) ≤ k that is “better” than x .

Remark 1: If the optimization problem is hard, then it is unlikely that this local search
problem is polynomial-time solvable: otherwise we would be able to find an optimum
solution.

Remark 2: Size of the k-neighborhood is usually nO(k) ⇒ local search is
polynomial-time solvable for every fixed k , but this is not practical for larger k .

22

k-step Local Search
The question that we want to investigate:

Question
Is k-step Local Search FPT for a particular problem?

If yes, then local search algorithms can consider larger neighborhoods, improving their
efficiency.

Important: k is the number of allowed changes and not the size of the solution.
Relevant even if solution size is large.

Examples:
Local search is easy: it is FPT to find a larger independent set in a planar graph
with at most k exchanges [Fellows et al. 2008].
Local search is hard: it is W[1]-hard to check if it is possible to obtain a shorter
TSP tour by replacing at most k arcs [M. 2008].

23

k-step Local Search
The question that we want to investigate:

Question
Is k-step Local Search FPT for a particular problem?

If yes, then local search algorithms can consider larger neighborhoods, improving their
efficiency.

Important: k is the number of allowed changes and not the size of the solution.
Relevant even if solution size is large.

Examples:
Local search is easy: it is FPT to find a larger independent set in a planar graph
with at most k exchanges [Fellows et al. 2008].
Local search is hard: it is W[1]-hard to check if it is possible to obtain a shorter
TSP tour by replacing at most k arcs [M. 2008].

23

Local search for Sat

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k-neighborhood for q-Sat is FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k-neighborhood for Max 2-Sat is W[1]-hard.

A family of problems:

Theorem [Krokhin and M. 2008]

Dichotomy results for MinOnes-Sat(Γ).

24

Local search for Sat

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k-neighborhood for q-Sat is FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k-neighborhood for Max 2-Sat is W[1]-hard.

A family of problems:

Theorem [Krokhin and M. 2008]

Dichotomy results for MinOnes-Sat(Γ).

24

Local search for Sat

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k-neighborhood for q-Sat is FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k-neighborhood for Max 2-Sat is W[1]-hard.

A family of problems:

Theorem [Krokhin and M. 2008]

Dichotomy results for MinOnes-Sat(Γ).

24

Strict vs. permissive

Something strange: for some problems (e.g., Vertex Cover on bipartite graphs),
local search is hard, even though the problem is polynomial-time solvable.

Strict k-step Local Search

Input: instance I , solution x , integer k
Find: A solution x ′ with dist(x , x ′) ≤ k that is “better” than x .

Permissive k-step Local Search

Input: instance I , solution x , integer k
Find: Any solution x ′ “better” than x , if there is such a solution

at distance at most k .

25

Strict vs. permissive

Something strange: for some problems (e.g., Vertex Cover on bipartite graphs),
local search is hard, even though the problem is polynomial-time solvable.

Strict k-step Local Search

Input: instance I , solution x , integer k
Find: A solution x ′ with dist(x , x ′) ≤ k that is “better” than x .

Permissive k-step Local Search

Input: instance I , solution x , integer k
Find: Any solution x ′ “better” than x , if there is such a solution

at distance at most k .

25

Strict vs. permissive

Something strange: for some problems (e.g., Vertex Cover on bipartite graphs),
local search is hard, even though the problem is polynomial-time solvable.

Strict k-step Local Search

Input: instance I , solution x , integer k
Find: A solution x ′ with dist(x , x ′) ≤ k that is “better” than x .

Permissive k-step Local Search

Input: instance I , solution x , integer k
Find: Any solution x ′ “better” than x , if there is such a solution

at distance at most k .

25

CSP with infinite domains

A CSP instance is given by describing the
variables,
domain of the variables,
constraints on the variables.

What about CSP instances where the domain is e.g. N?

How can we describe in the input a constraint over an infinite domain?

Makes sense only if we considered a restricted, structured class of constraints.

26

CSP with infinite domains

A CSP instance is given by describing the
variables,
domain of the variables,
constraints on the variables.

What about CSP instances where the domain is e.g. N?

How can we describe in the input a constraint over an infinite domain?

Makes sense only if we considered a restricted, structured class of constraints.

26

CSP with infinite domains

Some interesting classes of constraints over infinite domains:

Equality constraints
Domain: Z
Constraints: Boolean combinations of =
MinUnSat dichotomy by [Osipov and Wahlström 2023]:

FPT
W[1]-hard with constant factor approximation
W[1]-hard with no constant factor approximation

27

CSP with infinite domains

Some interesting classes of constraints over infinite domains:

Point algebra/temporal constraints
Domain: Z
Constraints: Boolean combinations of <, =
P vs. NP-hard dichotomy by [Bodirsky and Kára 2008]

Being a directed acyclic graph can be expressed as satisfiability with < constraints
Directed Feedback Arc Set can be expressed as satisfying all but at most k
of the < constraints.
MinUnSat: FPT vs. W[1]-hard dichotomy for all subsets Γ ⊆ {<,≤,=, ̸=} by
[Osipov, Pilipczuk, Wahlström 2024]

27

CSP with infinite domains

Some interesting classes of constraints over infinite domains:

Allan’s interval algebra/interval constraints
Domain: intervals on a line, i.e. (a, b) ∈ Z× Z with a ≤ b.
Constraints: precedes, disjoint, overlap, between etc.
(13 standard relations)
MinUnSat: FPT vs. W[1]-hard dichotomy by [Dabrowski et al. 2023]

What about more general constraints: arbitrary Boolean combinations of <, =
over the endponts of intervals?

27

Graphs and hypergraphs related to CSP
Gaifman/primal graph: vertices are the variables, two variables are adjacent if they
appear in a common constraint.

Incidence graph: bipartite graph, vertices are the variables and constraints.

Hypergraph: vertices are the variables, constraints are the hyperedges.

I = C1(x2, x1, x3) ∧ C2(x4, x3) ∧ C3(x1, x4, x2)

C1 C3

C2

HypergraphIncidence graphPrimal graph

x3

x2

x1

x4 x4

x4

C3
x3

x2

x1

C2C1

x3x2x1

28

Treewidth and CSP

Theorem [Freuder 1990]

For every fixed k , CSP can be solved in polynomial time if the primal graph of the
instance has treewidth at most k .

Note: The running time is |D|O(k), which is not FPT parameterized by treewidth.

We know that binary CSP(G) is polynomial-time solvable for every class G of graphs
with bounded treewidth. Are there other polynomial cases?

29

Treewidth and CSP

Theorem [Freuder 1990]

For every fixed k , CSP can be solved in polynomial time if the primal graph of the
instance has treewidth at most k .

Note: The running time is |D|O(k), which is not FPT parameterized by treewidth.

We know that binary CSP(G) is polynomial-time solvable for every class G of graphs
with bounded treewidth. Are there other polynomial cases?

29

Tractable structures

Question: Which graph properties lead to polynomial-time solvable CSP instances?

Systematic study:
Binary CSP: Every constraint is of arity 2.
CSP(G): problem restricted to binary CSP instances with primal graph in G.
Which classes G make CSP(G) FPT?
E.g., if G is the set of trees, then it is easy, if G is the set of 3-regular graphs, then
it is W[1]-hard.

30

Dichotomy for binary CSP
Complete answer for every class G:

Theorem [Grohe-Schwentick-Segoufin 2001]
Let G be a computable class of graphs.
(1) If G has bounded treewidth, then CSP(G) is

FPT parameterized by number of variables
(in fact, polynomial-time solvable).

(2) If G has unbounded treewidth, then CSP(G) is
W[1]-hard parameterized by number of variables.

Note: In (2), CSP(G) is not necessarily NP-hard.

31

Dichotomy for binary CSP
Complete answer for every class G:

Theorem [Grohe-Schwentick-Segoufin 2001]
Let G be a recursively enumerable class of graphs. Assuming FPT ̸= W[1], the
following are equivalent:

Binary CSP(G) is polynomial-time solvable.
Binary CSP(G) is FPT parameterized by the number of variables.
G has bounded treewidth.

Note: Fixed-parameter tractability does not give us more power here than
polynomial-time solvability!

31

Can you beat treewidth?

The exponent of the running time has to depend on treewidth.
But can we do better than nO(tw)?

Theorem [M. 2010]

Let G be a recursively enumerable class of graphs. Assuming ETH, there is no
f (k)no(tw/ log tw) algorithm for CSP(G), where k is the number of variables.

More modern version, with a bound for fixed graph G instead of a class G:

Theorem [Cohen-Addad et al. 2021]

Assuming the ETH, there exists a universal constant α such that for any fixed primal
graph G such that tw(G) ≥ 2, there is no algorithm deciding the binary CSP instances
whose primal graph is G in time O(|D|α·tw/ log tw).

32

Can you beat treewidth?

The exponent of the running time has to depend on treewidth.
But can we do better than nO(tw)?

Theorem [M. 2010]

Let G be a recursively enumerable class of graphs. Assuming ETH, there is no
f (k)no(tw/ log tw) algorithm for CSP(G), where k is the number of variables.

More modern version, with a bound for fixed graph G instead of a class G:

Theorem [Cohen-Addad et al. 2021]

Assuming the ETH, there exists a universal constant α such that for any fixed primal
graph G such that tw(G) ≥ 2, there is no algorithm deciding the binary CSP instances
whose primal graph is G in time O(|D|α·tw/ log tw).

32

Can you beat treewidth?

The exponent of the running time has to depend on treewidth.
But can we do better than nO(tw)?

Theorem [M. 2010]

Let G be a recursively enumerable class of graphs. Assuming ETH, there is no
f (k)no(tw/ log tw) algorithm for CSP(G), where k is the number of variables.

More modern version, with a bound for fixed graph G instead of a class G:

Theorem [Cohen-Addad et al. 2021]

Assuming the ETH, there exists a universal constant α such that for any fixed primal
graph G such that tw(G) ≥ 2, there is no algorithm deciding the binary CSP instances
whose primal graph is G in time O(|D|α·tw/ log tw).

32

Combination of parameters

CSP can be parameterized by many (combination of) parameters.
Examples:

CSP is W[1]-hard parameterized by the treewidth of the primal graph.
CSP is FPT parameterized by the treewidth of the primal graph and the domain
size.

[Samer and Szeider 2010] considered 11 parameters and determined the complexity of
CSP by any subset of these parameters.

tw: treewidth of primal graph
twd : tw of dual graph
tw∗: tw of incidence graph
vars: number of variables
dom: domain size
cons: number of constraints

arity: maximum arity
dep: largest relation size
deg: largest variable occurrence
ovl: largest overlap between scopes
diff: largest difference between scopes

33

Combination of parameters

CSP can be parameterized by many (combination of) parameters.
Examples:

CSP is W[1]-hard parameterized by the treewidth of the primal graph.
CSP is FPT parameterized by the treewidth of the primal graph and the domain
size.

[Samer and Szeider 2010] considered 11 parameters and determined the complexity of
CSP by any subset of these parameters.

tw: treewidth of primal graph
twd : tw of dual graph
tw∗: tw of incidence graph
vars: number of variables
dom: domain size
cons: number of constraints

arity: maximum arity
dep: largest relation size
deg: largest variable occurrence
ovl: largest overlap between scopes
diff: largest difference between scopes

33

Summary

Fixed-parameter tractability results for Sat and CSPs do exist.
Choice of parameter is not obvious.
0-1 domain vs. finite domain vs. infinite domain
Some topics:

Above average parameterization.
Local search.
Parameters related to the graph of the constraints.

34

