Constraint Satisfaction and fixed-parameter tractability

Dániel Marx

CISPA Helmholtz Center for Information Security Saarbrücken, Germany

Workshop on Parameterized Algorithms and Constraint Satisfaction (PACS 2024)

Tallinn, Estonia

July 7, 2024

Reactions to FPT

Typical graph algorithms researcher:

Hmm... Is my favorite graph problem FPT parameterized by the size of the solution/number of objects/etc. ?

Reactions to FPT

Typical graph algorithms researcher:

Hmm... Is my favorite graph problem FPT parameterized by the size of the solution/number of objects/etc. ?

Typical CSP researcher:

 SAT is trivially FPT parameterized by the number of variables. So why should I care?

Parameterizing SAT

Trivial: 3SAT is FPT parameterized by the number of variables (e.g., $2^k \cdot n^{O(1)}$ time algorithm).

Trivial: 3SAT is FPT parameterized by the number of clauses (e.g., $2^{3k} \cdot n^{O(1)}$ time algorithm).

What about SAT parameterized by the number k of clauses?

Parameterizing SAT

Trivial: 3SAT is FPT parameterized by the number of variables (e.g., $2^k \cdot n^{O(1)}$ time algorithm).

Trivial: 3SAT is FPT parameterized by the number of clauses (e.g., $2^{3k} \cdot n^{O(1)}$ time algorithm).

What about SAT parameterized by the number k of clauses?

Algorithm 1: Problem kernel

- If a clause has more than *k* literals: can be ignored, removing it does not make the problem any easier.
- If every clause has at most k literals: there are at most k^2 variables, use brute force.

Parameterizing SAT

Trivial: 3SAT is FPT parameterized by the number of variables (e.g., $2^k \cdot n^{O(1)}$ time algorithm).

Trivial: 3SAT is FPT parameterized by the number of clauses (e.g., $2^{3k} \cdot n^{O(1)}$ time algorithm).

What about SAT parameterized by the number k of clauses?

Algorithm 2: Bounded search tree

- Pick a variable occurring both positively and negatively, branch on setting it to 0 or 1.
- In both branches, the number of clauses strictly decreases
 ⇒ search tree of size 2^k.

Max Sat

- MAX SAT: Given a formula, satisfy at least k clauses.
- Polynomial for fixed k: guess the k clauses, use the previous algorithm to check if they are satisfiable.
- Is the problem FPT?

MAX SAT

- MAX SAT: Given a formula, satisfy at least k clauses.
- Polynomial for fixed k: guess the k clauses, use the previous algorithm to check if they are satisfiable.
- Is the problem FPT?
- YES: If there are at least 2k clauses, a random assignment satisfies k clauses on average. Otherwise, use the previous algorithm.

This is not very insightful, can we say anything more interesting?

Above average MAX SAT

m/2 satisfiable clauses are guaranteed. But can we satisfy m/2 + k clauses?

Above average MAX SAT

- m/2 satisfiable clauses are guaranteed. But can we satisfy m/2 + k clauses?
 - Above average MAX SAT (satisfy m/2 + k clauses) is FPT [Mahajan and Raman 1999]
 - Above average MAX r-SAT (satisfy $(1 1/2^r)m + k$ clauses) is FPT [Alon et al. 2010]
 - Satisfying $\sum_{i=1}^{m} (1-1/2^{r_i}) + k$ clauses is NP-hard for k=2 [Crowston et al. 2012]
 - Above average Max r-Lin-2 (satisfy m/2 + k linear equations) is FPT [Gutin et al. 2010]
 - Permutation CSPs such as MAXIMUM ACYCLIC SUBGRAPH and BETWEENNESS [Gutin et al. 2010].
 - . . .

Boolean constraint satisfaction problems

Let Γ be a set of **Boolean** relations. A Γ -formula is a conjunction of relations in Γ :

$$R_1(x_1, x_4, x_5) \wedge R_2(x_2, x_1) \wedge R_1(x_3, x_3, x_3) \wedge R_3(x_5, x_1, x_4, x_1)$$

$SAT(\Gamma)$

- ullet Given: an Γ -formula arphi
- ullet Find: a variable assignment satisfying φ

Boolean constraint satisfaction problems

Let Γ be a set of **Boolean** relations. A Γ -formula is a conjunction of relations in Γ :

$$R_1(x_1, x_4, x_5) \wedge R_2(x_2, x_1) \wedge R_1(x_3, x_3, x_3) \wedge R_3(x_5, x_1, x_4, x_1)$$

$SAT(\Gamma)$

- ullet Given: an Γ -formula φ
- ullet Find: a variable assignment satisfying arphi

```
\begin{split} \Gamma &= \{ a \neq b \} \Rightarrow \mathsf{SAT}(\Gamma) = \mathsf{2}\text{-coloring of a graph} \\ \Gamma &= \{ a \lor b, \ a \lor \bar{b}, \ \bar{a} \lor \bar{b} \} \Rightarrow \mathsf{SAT}(\Gamma) = \mathsf{2SAT} \\ \Gamma &= \{ a \lor b \lor c, a \lor b \lor \bar{c}, a \lor \bar{b} \lor \bar{c}, \bar{a} \lor \bar{b} \lor \bar{c} \} \Rightarrow \mathsf{SAT}(\Gamma) = \mathsf{3SAT} \end{split}
```

Question: SAT(Γ) is polynomial time solvable for which Γ ? It is NP-complete for which Γ ?

Schaefer's Dichotomy Theorem (1978)

Theorem [Schaefer 1978]

For every Γ , the SAT(Γ) problem is polynomial-time solvable if one of the following holds, and NP-complete otherwise:

- Every relation is satisfied by the all 0 assignment
- Every relation is satisfied by the all 1 assignment
- Every relation can be expressed by a 2SAT formula
- Every relation can be expressed by a Horn formula
- Every relation can be expressed by an anti-Horn formula
- Every relation is an affine subspace over GF(2)

Schaefer's Dichotomy Theorem (1978)

Theorem [Schaefer 1978]

For every Γ , the SAT(Γ) problem is polynomial-time solvable if one of the following holds, and NP-complete otherwise:

- Every relation is satisfied by the all 0 assignment
- Every relation is satisfied by the all 1 assignment
- Every relation can be expressed by a 2SAT formula
- Every relation can be expressed by a Horn formula
- Every relation can be expressed by an anti-Horn formula
- Every relation is an affine subspace over GF(2)

This is surprising for two reasons:

- this family does not contain NP-intermediate problems and
- the boundary of polynomial-time and NP-hard problems can be cleanly characterized.

Other dichotomy results

- MAX-SAT, MIN-UNSAT [Khanna et al. 2001][Creignou 1995]
- MAXONES-SAT, MINONES-SAT [Khanna et al. 2001]
- Inverse satisfiability [Kavvadias and Sideri 1999]
- #SAT [Creignou and Hermann 1996]
- ...

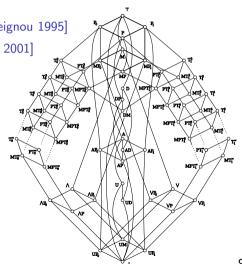
Other dichotomy results

• MAX-SAT, MIN-UNSAT [Khanna et al. 2001][Creignou 1995]

 \bullet MaxOnes-Sat, MinOnes-Sat [Khanna et al. 2001]

- Inverse satisfiability [Kavvadias and Sideri 1999]
- ullet $\#\mathrm{SAT}$ [Creignou and Hermann 1996]
- . . .

The understanding of Boolean constraints given by Post's Lattice often helps a lot.



Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the

- variables,
- domain of the variables,
- constraints on the variables.

Task: Find an assignment that satisfies every constraint.

$$I = C_1(x_1, x_2, x_3) \wedge C_2(x_2, x_4) \wedge C_3(x_1, x_3, x_4)$$

Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the

- variables,
- domain of the variables,
- constraints on the variables.

Task: Find an assignment that satisfies every constraint.

$$I = C_1(x_1, x_2, x_3) \wedge C_2(x_2, x_4) \wedge C_3(x_1, x_3, x_4)$$

Examples:

- 3SAT: 2-element domain, every constraint is ternary
- VERTEX COLORING: domain is the set of colors, binary constraints
- k-CLIQUE (in graph G): k variables, domain is the vertices of G, $\binom{k}{2}$ binary constraints

Dichotomies for CSP

- CSP over a domain of size 3 [Bulatov 2002]
- CSP over arbitrary finite domain [Bulatov 2017][Zhuk 2017]
 - Was the Feder-Vardi conjecture!
- MAXCSP with fixed-valued constraints [Deineko et al. 2008]
- Finite-Valued VCSP [Thapper and Zivný 2013]
- General-Valued VCSP [Kolmogorov et al. 2015]
- #CSP [Bulatov 2008]
- ullet #CSP approximation [Chen et al. 2013]
- ...

Dichotomies for CSP

- CSP over a domain of size 3 [Bulatov 2002]
- CSP over arbitrary finite domain [Bulatov 2017][Zhuk 2017]
 - Was the Feder-Vardi conjecture!
- MAXCSP with fixed-valued constraints [Deineko et al. 2008]
- Finite-Valued VCSP [Thapper and Zivný 2013]
- General-Valued VCSP [Kolmogorov et al. 2015]
- #CSP [Bulatov 2008]
- ullet #CSP approximation [Chen et al. 2013]
- . . .

Many different versions of SAT and CSP can be studied from the viewpoint of polynomial-time algorithms and dichotomy results can be expected.

Weighted problems

Parameterizing by the weight (= number of 1s) of the solution.

- MINONES-SAT(Γ):
 Find a satisfying assignment with weight at most k
- EXACTONES-SAT(Γ):
 Find a satisfying assignment with weight exactly *k*
- MAXONES-SAT(Γ):
 Find a satisfying assignment with weight at least k

The first two problems can be always solved in $n^{O(k)}$ time, and the third one as well if $SAT(\Gamma)$ is in P (and Γ is closed under substituting constants).

Goal: Characterize which languages Γ make these problems FPT.

EXACTONES-SAT (Γ)

Theorem [Marx 2004]

EXACTONES-SAT(Γ) is FPT if Γ is weakly separable and W[1]-hard otherwise.

Examples of weakly separable constraints:

- affine constraints
- "0 or 5 out of 8"

Examples of not weakly separable constraints:

- $\bullet (\neg x \lor \neg y)$
- $\bullet x \rightarrow y$
- "0 or 4 out of 8"

EXACTONES-SAT (Γ)

A more fine-grained characterization: what can be the exponent in the W[1]-hard cases?

EXACTONES-SAT (Γ)

A more fine-grained characterization: what can be the exponent in the W[1]-hard cases?

Charaterization by [Künnemann and Marx 2020]:

- FPT regime
- Subexponential regime
 - $f(k)n^{O(\sqrt{k})}$ algorithm
 - no $f(k)n^{o(\sqrt[3]{k})}$ algorithm assuming the Exponential-Time Hypothesis (ETH)
- Clique regime
 - $f(k)n^{(\omega/3)k+O(1)}$ algorithm
 - no $f(k)n^{(\omega/3-\epsilon)+O(1)}$ algorithm
- Brute-force regime:
 - can be solved in $n^{k+O(1)}$ time
 - no $f(k)n^{(1-\epsilon)k+O(1)}$ algorithm assuming the 3-UNIFORM K-HYPERCLIQUE conjecture.

MINONES-SAT(Γ)

The bounded-search tree algorithm for $VERTEX\ COVER$ can be generalized to MINONES-SAT.

Observation

MINONES-SAT(Γ) is FPT for every finite Γ .

MINONES-SAT(Γ)

The bounded-search tree algorithm for $VERTEX\ COVER$ can be generalized to MINONES-SAT.

Observation

MINONES-SAT(Γ) is FPT for every finite Γ .

But can we solve the problem simply by preprocessing?

Definition

A polynomial kernel is a polynomial-time reduction creating an equivalent instance whose size is polynomial in k.

Goal: Characterize the languages Γ for which MINONES-SAT(Γ) has a polynomial kernel.

Example: the special case d-HITTING SET (where Γ contains only $R = x_1 \lor \cdots \lor x_d$) has a polynomial kernel ("Sunflower reduction")

Dichotomy for kernelization

Kernelization for general MINONES-SAT(Γ) generalizes the sunflower reduction, and requires that Γ is "mergeable."

Theorem [Kratsch and Wahlström 2010]

- (1) If MINONES-SAT(Γ) is polynomial-time solvable or Γ is mergeable, then MINONES-SAT(Γ) has a polynomial kernelization.
- (2) If MINONES-SAT(Γ) is NP-hard and Γ is not mergebable, then MINONES-SAT(Γ) does not have a polynomial kernel, unless the polynomial hierarchy collapses.

Dichotomy for kernelization

Similar results for other problems:

Theorem [Kratsch, M., Wahlström 2010]

- If Γ has property X, then MAXONES-SAT(Γ) has a polynomial kernel, and otherwise no (unless the polynomial hierarchy collapses).
- If Γ has property Y, then EXACTONES-SAT(Γ) has a polynomial kernel, and otherwise no (unless the polynomial hierarchy collapses).

What is the generalization of $EXACTONES-SAT(\Gamma)$ to larger domains?

- Find a solution with exactly *k* nonzero values (zeros constraint).
- ② Find a solution where nonzero value i appears exactly k_i times (cardinality constraint).

Theorem [Bulatov and M. 2011]

For every Γ closed under substituting constants, $\mathsf{CSP}(\Gamma)$ with zeros constraint is FPT or W[1]-hard.

The following two problems are equivalent:

- CSP(Γ) with cardinality constraint, where Γ contains only the relation $R = \{00, 10, 02\}.$
- BICLIQUE: Find a complete bipartite graph with *k* vertices on each side. The fixed-parameter tractability of BICLIQUE was a notorious open problem.

The following two problems are equivalent:

- CSP(Γ) with cardinality constraint, where Γ contains only the relation $R = \{00, 10, 02\}.$
- BICLIQUE: Find a complete bipartite graph with *k* vertices on each side. The fixed-parameter tractability of BICLIQUE was a notorious open problem.

Theorem [Bulatov and M. 2011]

For every Γ closed under substituting constants, $CSP(\Gamma)$ with cardinality constraint is FPT or BICLIQUE-hard.

Theorem [Lin 2015]

BICLIQUE is W[1]-hard.

The following two problems are equivalent:

- CSP(Γ) with cardinality constraint, where Γ contains only the relation $R = \{00, 10, 02\}.$
- BICLIQUE: Find a complete bipartite graph with *k* vertices on each side. The fixed-parameter tractability of BICLIQUE was a notorious open problem.

Theorem [Bulatov and M. 2011][Lin 2015]

For every Γ closed under substituting constants, $\mathsf{CSP}(\Gamma)$ with cardinality constraint is FPT or W[1]-hard.

MinUnSat and graph problems

CSP over a fixed domain D:

- Satisfying at least k constraints is always FPT: a random assingment satisfies a linear fraction of the constraints.
- Satisfying all but at most k constaints: can be challanging and can model important graph problems.

MinUnSat and graph problems

CSP over a fixed domain D:

- Satisfying at least *k* constraints is always FPT: a random assingment satisfies a linear fraction of the constraints.
- Satisfying all but at most *k* constaints: can be challanging and can model important graph problems.

Some problems of interest:

- Edge Bipartization: $D = \{0, 1\}, \Gamma = \{\neq\}$
- Almost 2Sat: $D = \{0, 1\}$, $\Gamma = \{a \lor b, \ a \lor \overline{b}, \ \overline{a} \lor \overline{b}\}$:
- t-Terminal Multiway Cut: $D = \{1, ..., t\}$, $\Gamma = \{=\}$:
- DIRECTED FEEDBACK VERTEX SET and MULTICUT can be reduced to such problems.

Local search

Local search

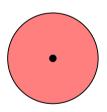
Walk in the solution space by iteratively replacing the current solution with a better solution in the local neighborhood.

•

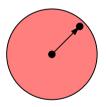
Local search

Local search

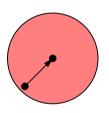
Walk in the solution space by iteratively replacing the current solution with a better solution in the local neighborhood.



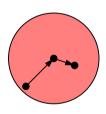
Local search



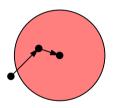
Local search



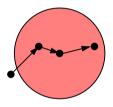
Local search



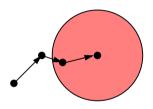
Local search



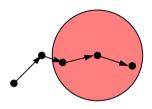
Local search



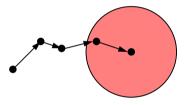
Local search



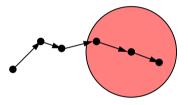
Local search



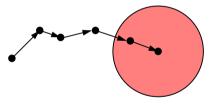
Local search



Local search

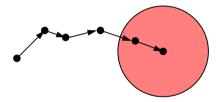


Local search



Local search

Walk in the solution space by iteratively replacing the current solution with a better solution in the local neighborhood.



Problem: local search can stop at a local optimum (no better solution in the local neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

Local neighborhood

The local neighborhood is defined in a problem-specific way:

- For TSP, the neighbors are obtained by swapping 2 cities or replacing 2 edges.
- For a problem with 0-1 variables, the neighbors are obtained by flipping a single variable.
- For subgraph problems, the neighbors are obtained by adding/removing one edge.

More generally: reordering k cities, flipping k variables, etc.

Local neighborhood

The local neighborhood is defined in a problem-specific way:

- For TSP, the neighbors are obtained by swapping 2 cities or replacing 2 edges.
- For a problem with 0-1 variables, the neighbors are obtained by flipping a single variable.
- For subgraph problems, the neighbors are obtained by adding/removing one edge.

More generally: reordering k cities, flipping k variables, etc.

Larger neighborhood (larger k):

- algorithm is less likely to get stuck in a local optimum,
- it is more difficult to check if there is a better solution in the neighborhood.

Searching the neighborhood

Question: Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

k-step Local Search

Input: instance l, solution x, integer k

Find: A solution x' with $dist(x, x') \le k$ that is "better" than x.

Searching the neighborhood

Question: Is there an efficient way of finding a better solution in the k-neighborhood?

We study the complexity of the following problem:

k-step Local Search

Input: instance l, solution x, integer k

Find: A solution x' with $dist(x, x') \le k$ that is "better" than x.

Remark 1: If the optimization problem is hard, then it is unlikely that this local search problem is polynomial-time solvable: otherwise we would be able to find an optimum solution.

Remark 2: Size of the *k*-neighborhood is usually $n^{O(k)} \Rightarrow$ local search is polynomial-time solvable for every fixed *k*, but this is not practical for larger *k*.

k-step Local Search

The question that we want to investigate:

Question

Is k-step Local Search FPT for a particular problem?

If yes, then local search algorithms can consider larger neighborhoods, improving their efficiency.

Important: k is the number of allowed changes and **not** the size of the solution. Relevant even if solution size is large.

k-step Local Search

The question that we want to investigate:

Question

Is k-step Local Search FPT for a particular problem?

If yes, then local search algorithms can consider larger neighborhoods, improving their efficiency.

Important: k is the number of allowed changes and **not** the size of the solution. Relevant even if solution size is large.

Examples:

- Local search is easy: it is FPT to find a larger independent set in a planar graph with at most *k* exchanges [Fellows et al. 2008].
- Local search is hard: it is W[1]-hard to check if it is possible to obtain a shorter TSP tour by replacing at most k arcs [M. 2008].

Local search for SAT

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k-neighborhood for q-SAT is FPT.

Local search for SAT

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k-neighborhood for q-SAT is FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k-neighborhood for MAX 2-SAT is W[1]-hard.

Local search for SAT

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k-neighborhood for q-SAT is FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k-neighborhood for MAX 2-SAT is W[1]-hard.

A family of problems:

Theorem [Krokhin and M. 2008]

Dichotomy results for MINONES-SAT(Γ).

Strict vs. permissive

Something strange: for some problems (e.g., VERTEX COVER on bipartite graphs), local search is hard, even though the problem is polynomial-time solvable.

Strict vs. permissive

Something strange: for some problems (e.g., VERTEX COVER on bipartite graphs), local search is hard, even though the problem is polynomial-time solvable.

Strict k-step Local Search

Input: instance l, solution x, integer k

Find: A solution x' with $dist(x, x') \le k$ that is "better" than x.

Strict vs. permissive

Something strange: for some problems (e.g., VERTEX COVER on bipartite graphs), local search is hard, even though the problem is polynomial-time solvable.

Strict k-step Local Search

Input: instance l, solution x, integer k

Find: A solution x' with $dist(x, x') \le k$ that is "better" than x.

Permissive k-step Local Search

Input: instance l, solution x, integer k

Find: Any solution x' "better" than x, if there is such a solution

at distance at most k.

A CSP instance is given by describing the

- variables,
- domain of the variables,
- constraints on the variables.

What about CSP instances where the domain is e.g. N?

A CSP instance is given by describing the

- variables,
- domain of the variables,
- constraints on the variables.

What about CSP instances where the domain is e.g. N?

How can we describe in the input a constraint over an infinite domain?

Makes sense only if we considered a restricted, structured class of constraints.

Some interesting classes of constraints over infinite domains:

Equality constraints

- Domain: Z
- Constraints: Boolean combinations of =
- MINUNSAT dichotomy by [Osipov and Wahlström 2023]:
 - FPT
 - W[1]-hard with constant factor approximation
 - W[1]-hard with no constant factor approximation

Some interesting classes of constraints over infinite domains:

Point algebra/temporal constraints

- Domain: Z
- Constraints: Boolean combinations of <, =
- P vs. NP-hard dichotomy by [Bodirsky and Kára 2008]
- Being a directed acyclic graph can be expressed as satisfiability with < constraints
- DIRECTED FEEDBACK ARC SET can be expressed as satisfying all but at most k
 of the < constraints.
- MINUNSAT: FPT vs. W[1]-hard dichotomy for all subsets $\Gamma \subseteq \{<, \leq, =, \neq\}$ by [Osipov, Pilipczuk, Wahlström 2024]

Some interesting classes of constraints over infinite domains:

Allan's interval algebra/interval constraints

- Domain: intervals on a line, i.e. $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ with $a \leq b$.
- Constraints: precedes, disjoint, overlap, between etc. (13 standard relations)
- MINUNSAT: FPT vs. W[1]-hard dichotomy by [Dabrowski et al. 2023]
- What about more general constraints: arbitrary Boolean combinations of <, = over the endponts of intervals?

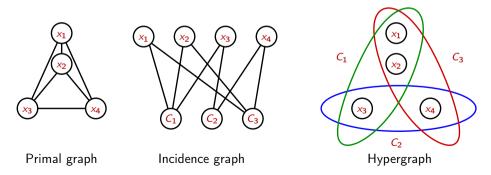
Graphs and hypergraphs related to CSP

Gaifman/primal graph: vertices are the variables, two variables are adjacent if they appear in a common constraint.

Incidence graph: bipartite graph, vertices are the variables and constraints.

Hypergraph: vertices are the variables, constraints are the hyperedges.

$$I = C_1(x_2, x_1, x_3) \wedge C_2(x_4, x_3) \wedge C_3(x_1, x_4, x_2)$$



Treewidth and CSP

Theorem [Freuder 1990]

For every fixed k, CSP can be solved in polynomial time if the primal graph of the instance has treewidth at most k.

Note: The running time is $|D|^{O(k)}$, which is not FPT parameterized by treewidth.

Treewidth and CSP

Theorem [Freuder 1990]

For every fixed k, CSP can be solved in polynomial time if the primal graph of the instance has treewidth at most k.

Note: The running time is $|D|^{O(k)}$, which is not FPT parameterized by treewidth.

We know that binary $\mathsf{CSP}(\mathcal{G})$ is polynomial-time solvable for every class \mathcal{G} of graphs with bounded treewidth. Are there other polynomial cases?

Tractable structures

Question: Which graph properties lead to polynomial-time solvable CSP instances?

Systematic study:

- Binary CSP: Every constraint is of arity 2.
- $\mathsf{CSP}(\mathcal{G})$: problem restricted to binary CSP instances with primal graph in \mathcal{G} .
- Which classes \mathcal{G} make $CSP(\mathcal{G})$ FPT?
- E.g., if \mathcal{G} is the set of trees, then it is easy, if \mathcal{G} is the set of 3-regular graphs, then it is W[1]-hard.

Dichotomy for binary CSP

Complete answer for **every** class \mathcal{G} :

Theorem [Grohe-Schwentick-Segoufin 2001]

Let \mathcal{G} be a computable class of graphs.

- (1) If \mathcal{G} has bounded treewidth, then $\mathsf{CSP}(\mathcal{G})$ is FPT parameterized by number of variables (in fact, polynomial-time solvable).
- (2) If \mathcal{G} has unbounded treewidth, then $\mathsf{CSP}(\mathcal{G})$ is W[1]-hard parameterized by number of variables.

Note: In (2), CSP(G) is not necessarily NP-hard.

Dichotomy for binary CSP

Complete answer for **every** class \mathcal{G} :

Theorem [Grohe-Schwentick-Segoufin 2001]

Let \mathcal{G} be a recursively enumerable class of graphs. Assuming FPT \neq W[1], the following are equivalent:

- Binary CSP(G) is polynomial-time solvable.
- Binary CSP(G) is FPT parameterized by the number of variables.
- G has bounded treewidth.

Note: Fixed-parameter tractability does not give us more power here than polynomial-time solvability!

Can you beat treewidth?

The exponent of the running time has to depend on treewidth. But can we do better than $n^{O(tw)}$?

Can you beat treewidth?

The exponent of the running time has to depend on treewidth. But can we do better than $n^{O(tw)}$?

Theorem [M. 2010]

Let \mathcal{G} be a recursively enumerable class of graphs. Assuming ETH, there is no $f(k)n^{o(\text{tw/log tw})}$ algorithm for $\text{CSP}(\mathcal{G})$, where k is the number of variables.

Can you beat treewidth?

The exponent of the running time has to depend on treewidth. But can we do better than $n^{O(tw)}$?

Theorem [M. 2010]

Let \mathcal{G} be a recursively enumerable class of graphs. Assuming ETH, there is no $f(k)n^{o(tw/\log tw)}$ algorithm for $\mathsf{CSP}(\mathcal{G})$, where k is the number of variables.

More modern version, with a bound for fixed graph G instead of a class G:

Theorem [Cohen-Addad et al. 2021]

Assuming the ETH, there exists a universal constant α such that for any fixed primal graph G such that $tw(G) \geq 2$, there is no algorithm deciding the binary CSP instances whose primal graph is G in time $O(|D|^{\alpha \cdot tw/\log tw})$.

Combination of parameters

CSP can be parameterized by many (combination of) parameters.

Examples:

- CSP is W[1]-hard parameterized by the treewidth of the primal graph.
- CSP is FPT parameterized by the treewidth of the primal graph and the domain size.

Combination of parameters

CSP can be parameterized by many (combination of) parameters.

Examples:

- CSP is W[1]-hard parameterized by the treewidth of the primal graph.
- CSP is FPT parameterized by the treewidth of the primal graph and the domain size.

[Samer and Szeider 2010] considered 11 parameters and determined the complexity of CSP by any subset of these parameters.

vars: dom:	treewidth of primal graph tw of dual graph tw of incidence graph number of variables domain size number of constraints	dep: deg: ovl:	maximum arity largest relation size largest variable occurrence largest overlap between scopes largest difference between scopes
---------------	--	----------------------	--

Summary

- Fixed-parameter tractability results for SAT and CSPs do exist.
- Choice of parameter is not obvious.
- 0-1 domain vs. finite domain vs. infinite domain
- Some topics:
 - Above average parameterization.
 - Local search.
 - Parameters related to the graph of the constraints.