Constraint Satisfaction and fixed-parameter tractability

Dániel Marx

CISPA Helmholtz Center for Information Security Saarbrücken, Germany

Workshop on Parameterized Algorithms and Constraint Satisfaction (PACS 2024) Tallinn, Estonia July 7, 2024

1

Typical graph algorithms researcher:

Hmm... Is my favorite graph problem FPT parameterized by the size of the solution/number of objects/etc. ?

Typical graph algorithms researcher:

Hmm... Is my favorite graph problem FPT parameterized by the size of the solution/number of objects/etc. ?

Typical CSP researcher:

SAT is trivially FPT parameterized by the number of variables. So why should I care?

Parameterizing SAT

Trivial: $3SAT$ is FPT parameterized by the number of variables (e.g., $2^k \cdot n^{O(1)}$ time algorithm).

Trivial: $3SAT$ is FPT parameterized by the number of clauses (e.g., $2^{3k} \cdot n^{O(1)}$ time algorithm).

What about SAT parameterized by the number k of clauses?

Parameterizing SAT

Trivial: $3SAT$ is FPT parameterized by the number of variables (e.g., $2^k \cdot n^{O(1)}$ time algorithm).

Trivial: $3SAT$ is FPT parameterized by the number of clauses (e.g., $2^{3k} \cdot n^{O(1)}$ time algorithm).

What about SAT parameterized by the number k of clauses?

Algorithm 1: Problem kernel

- If a clause has more than k literals: can be ignored, removing it does not make the problem any easier.
- If every clause has at most k literals: there are at most k^2 variables, use brute force.

Parameterizing SAT

Trivial: $3SAT$ is FPT parameterized by the number of variables (e.g., $2^k \cdot n^{O(1)}$ time algorithm).

Trivial: $3SAT$ is FPT parameterized by the number of clauses (e.g., $2^{3k} \cdot n^{O(1)}$ time algorithm).

What about SAT parameterized by the number k of clauses?

Algorithm 2: Bounded search tree

- Pick a variable occuring both positively and negatively, branch on setting it to 0 or 1.
- In both branches, the number of clauses strictly decreases \Rightarrow search tree of size 2^k .

MAX SAT

- \bullet MAX SAT: Given a formula, satisfy at least k clauses.
- Polynomial for fixed k : guess the k clauses, use the previous algorithm to check if they are satisfiable.
- Is the problem FPT?

MAX SAT

- \bullet MAX SAT: Given a formula, satisfy at least k clauses.
- Polynomial for fixed k : guess the k clauses, use the previous algorithm to check if they are satisfiable.
- Is the problem FPT?
- \bullet YES: If there are at least 2k clauses, a random assignment satisfies k clauses on average. Otherwise, use the previous algorithm.

This is not very insightful, can we say anything more interesting?

Above average MAX SAT

 $m/2$ satisfiable clauses are guaranteed. But can we satisfy $m/2 + k$ clauses?

Above average MAX SAT

 $m/2$ satisfiable clauses are guaranteed. But can we satisfy $m/2 + k$ clauses?

- Above average MAX SAT (satisfy $m/2 + k$ clauses) is FPT [Mahajan and Raman 1999]
- Above average $\text{MAX } r\text{-SAT } (\text{satisfy } (1 1/2^r)m + k \text{ clauses})$ is FPT [Alon et al. 2010]
- Satisfying $\sum_{i=1}^{m} (1 1/2^{r_i}) + k$ clauses is NP-hard for $k = 2$ [Crowston et al. 2012]
- Above average MAX r-LIN-2 (satisfy $m/2 + k$ linear equations) is FPT [Gutin et al. 2010]
- **Permutation CSPs such as** MAXIMUM ACYCLIC SUBGRAPH and BETWEENNESS [Gutin et al. 2010].

 \bullet ...

Boolean constraint satisfaction problems

Let Γ be a set of Boolean relations. A Γ-formula is a conjunction of relations in Γ:

 $R_1(x_1, x_4, x_5) \wedge R_2(x_2, x_1) \wedge R_1(x_3, x_3, x_3) \wedge R_3(x_5, x_1, x_4, x_1)$

SAT(Γ)

- Given: an Γ-formula φ
- Find: a variable assignment satisfying φ

Boolean constraint satisfaction problems

Let Γ be a set of Boolean relations. A Γ-formula is a conjunction of relations in Γ:

 $R_1(x_1, x_4, x_5) \wedge R_2(x_2, x_1) \wedge R_1(x_3, x_3, x_3) \wedge R_3(x_5, x_1, x_4, x_1)$

SAT(Γ)

- Given: an Γ-formula φ
- Find: a variable assignment satisfying φ

 $\Gamma = \{a \neq b\} \Rightarrow \text{SAT}(\Gamma) = 2$ -coloring of a graph $\Gamma = \{a \vee b, a \vee \overline{b}, \overline{a} \vee \overline{b}\} \Rightarrow \text{SAT}(\Gamma) = 2\text{SAT}$ $\overline{\Gamma} = \{a \vee b \vee c, a \vee b \vee \overline{c}, a \vee \overline{b} \vee \overline{c}, a \vee \overline{b} \vee \overline{c}\} \Rightarrow \text{SAT}(\Gamma) = 3\text{SAT}$

Question: SAT(Γ) is polynomial time solvable for which Γ? It is NP-complete for which Γ?

Schaefer's Dichotomy Theorem (1978)

Theorem [Schaefer 1978]

For every Γ, the SAT(Γ) problem is polynomial-time solvable if one of the following holds, and NP-complete otherwise:

- Every relation is satisfied by the all 0 assignment
- Every relation is satisfied by the all 1 assignment
- Every relation can be expressed by a 2SAT formula
- Every relation can be expressed by a Horn formula
- Every relation can be expressed by an anti-Horn formula
- \bullet Every relation is an affine subspace over $GF(2)$

Schaefer's Dichotomy Theorem (1978)

Theorem [Schaefer 1978]

For every Γ, the SAT(Γ) problem is polynomial-time solvable if one of the following holds, and NP-complete otherwise:

- Every relation is satisfied by the all 0 assignment
- Every relation is satisfied by the all 1 assignment
- Every relation can be expressed by a 2SAT formula
- Every relation can be expressed by a Horn formula
- Every relation can be expressed by an anti-Horn formula
- Every relation is an affine subspace over GF(2)

This is surprising for two reasons:

- this family does not contain NP-intermediate problems and
- the boundary of polynomial-time and NP-hard problems can be cleanly characterized.

Other dichotomy results

- MAX-SAT, MIN-UNSAT [Khanna et al. 2001][Creignou 1995]
- \bullet MAXONES-SAT, MINONES-SAT [Khanna et al. 2001]
- Inverse satisfiability [Kavvadias and Sideri 1999]
- #SAT [Creignou and Hermann 1996]
- \bullet ...

Other dichotomy results

- \bullet MAX-SAT, MIN-UNSAT [Khanna et al. 2001][Creignou 1995]
- \bullet MAXONES-SAT, MINONES-SAT [Khanna et al. 2001]
- Inverse satisfiability [Kavvadias and Sideri 1999]
- #SAT [Creignou and Hermann 1996]
- \bullet ...

The understanding of Boolean constraints given by Post's Lattice often helps a lot.

Constraint Satisfaction Problems (CSP)

- A CSP instance is given by describing the
	- **variables**.
	- **o** domain of the variables.
	- constraints on the variables.

Task: Find an assignment that satisfies every constraint.

 $I = C_1(x_1, x_2, x_3) \wedge C_2(x_2, x_4) \wedge C_3(x_1, x_3, x_4)$

Constraint Satisfaction Problems (CSP)

- A CSP instance is given by describing the
	- **•** variables.
	- **o** domain of the variables.
	- **e** constraints on the variables.

Task: Find an assignment that satisfies every constraint.

 $I = C_1(x_1, x_2, x_3) \wedge C_2(x_2, x_4) \wedge C_3(x_1, x_3, x_4)$

Examples:

- 3SAT: 2-element domain, every constraint is ternary
- VERTEX COLORING: domain is the set of colors, binary constraints
- k-CLIQUE (in graph G): k variables, domain is the vertices of G, $\binom{k}{2}$ $\binom{k}{2}$ binary constraints

Dichotomies for CSP

- CSP over a domain of size 3 [Bulatov 2002]
- CSP over arbitrary finite domain [Bulatov 2017][Zhuk 2017]
	- Was the Feder-Vardi conjecture!
- MaxCSP with fixed-valued constraints [Deineko et al. 2008]
- Finite-Valued VCSP [Thapper and Zivný 2013]
- **General-Valued VCSP [Kolmogorov et al. 2015]**
- \bullet $\#CSP$ [Bulatov 2008]
- \bullet $\#CSP$ approximation [Chen et al. 2013]
- \bullet ...

Dichotomies for CSP

- CSP over a domain of size 3 [Bulatov 2002]
- CSP over arbitrary finite domain [Bulatov 2017][Zhuk 2017]
	- Was the Feder-Vardi conjecture!
- MaxCSP with fixed-valued constraints [Deineko et al. 2008]
- Finite-Valued VCSP [Thapper and Zivný 2013]
- **General-Valued VCSP [Kolmogorov et al. 2015]**
- \bullet $\#CSP$ [Bulatov 2008]
- \bullet $\#CSP$ approximation [Chen et al. 2013]
- \bullet ...

Many different versions of SAT and CSP can be studied from the viewpoint of polynomial-time algorithms and dichotomy results can be expected.

Weighted problems

Parameterizing by the weight $(=$ number of 1s) of the solution.

 \bullet MINONES-SAT (Γ) :

Find a satisfying assignment with weight at most k

 \bullet EXACTONES-SAT (Γ) :

Find a satisfying assignment with weight exactly k

 \bullet MAXONES-SAT (Γ) :

Find a satisfying assignment with weight at least k

The first two problems can be always solved in $n^{O(k)}$ time, and the third one as well if $SAT(\Gamma)$ is in P (and Γ is closed under substituting constants).

Goal: Characterize which languages Γ make these problems FPT.

ExactOnes-Sat(Γ)

Theorem [Marx 2004]

 $\text{EXACTONES-SAT}(\Gamma)$ is FPT if Γ is weakly separable and W[1]-hard otherwise.

Examples of weakly separable constraints:

- affine constraints
- \bullet "0 or 5 out of 8"

Examples of not weakly separable constraints:

- \bullet $(\neg x \lor \neg y)$
- $\bullet x \rightarrow y$
- \bullet "0 or 4 out of 8"

ExactOnes-Sat(Γ)

A more fine-grained characterization: what can be the exponent in the W[1]-hard cases?

EXACTONES-SAT(Γ)

A more fine-grained characterization: what can be the exponent in the W[1]-hard cases?

Charaterization by [Künnemann and Marx 2020]:

- FPT regime
- Subexponential regime
	- $f(k)n^{O(\sqrt{k})}$ algorithm
	- no $f(k)n^{o(\sqrt[3]{k})}$ algorithm assuming the Exponential-Time Hypothesis (ETH)
- **•** Clique regime
	- $f(k)n^{(\omega/3)k+O(1)}$ algorithm
	- no $f(k)n^{(\omega/3-\epsilon)+O(1)}$ algorithm
- Brute-force regime:
	- can be solved in $n^{k+O(1)}$ time
	- no $f(k)n^{(1-\epsilon)k+O(1)}$ algorithm assuming the 3-UNIFORM K-HYPERCLIQUE conjecture.

$MINONES-SAT($ $\Gamma)$

The bounded-search tree algorithm for VERTEX COVER can be generalized to MINONES-SAT.

Observation

MinOnes-Sat(Γ) is FPT for every finite Γ.

$MINONES-SAT($ $\Gamma)$

The bounded-search tree algorithm for VERTEX COVER can be generalized to MINONES-SAT.

Observation

MinOnes-Sat(Γ) is FPT for every finite Γ.

But can we solve the problem simply by preprocessing?

Definition

A polynomial kernel is a polynomial-time reduction creating an equivalent instance whose size is polynomial in k .

Goal: Characterize the languages Γ for which MINONES-SAT(Γ) has a polynomial kernel.

Example: the special case d-HITTING SET (where Γ contains only $R = x_1 \vee \cdots \vee x_d$) has a polynomial kernel ("Sunflower reduction")

Dichotomy for kernelization

Kernelization for general $MINONES-SAT(\Gamma)$ generalizes the sunflower reduction, and requires that Γ is "mergeable."

Theorem [Kratsch and Wahlström 2010]

- (1) If $\text{MINONES-SAT}(\Gamma)$ is polynomial-time solvable or Γ is mergeable, then MinOnes-Sat(Γ) has a polynomial kernelization.
- (2) If $\text{MINONES-SAT}(\Gamma)$ is NP-hard and Γ is not mergebable, then $\text{MINONES-SAT}(\Gamma)$ does not have a polynomial kernel, unless the polynomial hierarchy collapses.

Similar results for other problems:

Theorem [Kratsch, M., Wahlström 2010]

- If Γ has property X, then $MAXONES-SAT(\Gamma)$ has a polynomial kernel, and otherwise no (unless the polynomial hierarchy collapses).
- **If Γ has property Y, then** $\text{EXACTONES-SAT}(\Gamma)$ has a polynomial kernel, and otherwise no (unless the polynomial hierarchy collapses).

What is the generalization of $\text{EXACTONES-SAT}(\Gamma)$ to larger domains?

- \bullet Find a solution with exactly k nonzero values (zeros constraint).
- **2** Find a solution where nonzero value *i* appears exactly k_i times (cardinality constraint).

Theorem [Bulatov and M. 2011]

For every Γ closed under substituting constants, CSP(Γ) with zeros constraint is FPT or W[1]-hard.

The following two problems are equivalent:

- CSP(Γ) with cardinality constraint, where Γ contains only the relation $R = \{00, 10, 02\}.$
- \bullet BICLIQUE: Find a complete bipartite graph with k vertices on each side. The fixed-parameter tractability of BICLIQUE was a notorious open problem.

The following two problems are equivalent:

- CSP(Γ) with cardinality constraint, where Γ contains only the relation $R = \{00, 10, 02\}.$
- \bullet BICLIQUE: Find a complete bipartite graph with k vertices on each side. The fixed-parameter tractability of **BICLIQUE** was a notorious open problem.

Theorem [Bulatov and M. 2011]

For every Γ closed under substituting constants, CSP(Γ) with cardinality constraint is FPT or BICLIQUE-hard.

Theorem [Lin 2015] BICLIQUE is W[1]-hard.

The following two problems are equivalent:

- CSP(Γ) with cardinality constraint, where Γ contains only the relation $R = \{00, 10, 02\}.$
- \bullet BICLIQUE: Find a complete bipartite graph with k vertices on each side. The fixed-parameter tractability of **BICLIQUE** was a notorious open problem.

Theorem [Bulatov and M. 2011][Lin 2015]

For every Γ closed under substituting constants, CSP(Γ) with cardinality constraint is FPT or W[1]-hard.

MinUnSat and graph problems

CSP over a fixed domain D:

- \bullet Satisfying at least k constraints is always FPT: a random assingment satisfies a linear fraction of the constraints.
- Satisfying all but at most k constaints: can be challanging and can model important graph problems.

MinUnSat and graph problems

CSP over a fixed domain D:

- \bullet Satisfying at least k constraints is always FPT: a random assingment satisfies a linear fraction of the constraints.
- Satisfying all but at most k constaints: can be challanging and can model important graph problems.

Some problems of interest:

- EDGE BIPARTIZATION: $D = \{0, 1\}$, $\Gamma = \{\neq\}$
- \bullet ALMOST 2SAT: $D = \{0, 1\}$, $\Gamma = \{a \lor b, a \lor \overline{b}, \overline{a} \lor \overline{b}\}$:
- \bullet t-TERMINAL MULTIWAY CUT: $D = \{1, \ldots, t\}$, $\Gamma = \{\equiv\}$:
- **DIRECTED FEEDBACK VERTEX SET and MULTICUT can be reduced to such** problems.

Local search

Local search

Walk in the solution space by iteratively replacing the current solution with a better solution in the local neighborhood.

Local search

Local search

Walk in the solution space by iteratively replacing the current solution with a better solution in the local neighborhood.

Local search

Local search

Walk in the solution space by iteratively replacing the current solution with a better solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better solution in the local neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.

Local neighborhood

The local neighborhood is defined in a problem-specific way:

- For TSP, the neighbors are obtained by swapping 2 cities or replacing 2 edges.
- For a problem with 0-1 variables, the neighbors are obtained by flipping a single variable.
- For subgraph problems, the neighbors are obtained by adding/removing one edge. More generally: reordering k cities, flipping k variables, etc.

Local neighborhood

The local neighborhood is defined in a problem-specific way:

- For TSP, the neighbors are obtained by swapping 2 cities or replacing 2 edges.
- For a problem with 0-1 variables, the neighbors are obtained by flipping a single variable.
- For subgraph problems, the neighbors are obtained by adding/removing one edge. More generally: reordering k cities, flipping k variables, etc.

Larger neighborhood (larger k):

- algorithm is less likely to get stuck in a local optimum,
- \bullet it is more difficult to check if there is a better solution in the neighborhood.

Searching the neighborhood

Question: Is there an efficient way of finding a better solution in the k-neighborhood? We study the complexity of the following problem:

k-step Local Search

Input: instance *I*, solution x , integer k Find: A solution x' with $dist(x, x') \leq k$ that is "better" than x.

Searching the neighborhood

Question: Is there an efficient way of finding a better solution in the k-neighborhood? We study the complexity of the following problem:

k-step Local Search

Input: instance *I*, solution x , integer k

Find: A solution x' with $dist(x, x') \leq k$ that is "better" than x.

Remark 1: If the optimization problem is hard, then it is unlikely that this local search problem is polynomial-time solvable: otherwise we would be able to find an optimum solution.

Remark 2: Size of the *k*-neighborhood is usually $n^{O(k)} \Rightarrow$ local search is polynomial-time solvable for every fixed k , but this is not practical for larger k .

k-step Local Search

The question that we want to investigate:

Question

Is k-step Local Search FPT for a particular problem?

If yes, then local search algorithms can consider larger neighborhoods, improving their efficiency.

Important: k is the number of allowed changes and not the size of the solution. Relevant even if solution size is large.

k-step Local Search

The question that we want to investigate:

Question

Is k-step Local Search FPT for a particular problem?

If yes, then local search algorithms can consider larger neighborhoods, improving their efficiency.

Important: k is the number of allowed changes and not the size of the solution. Relevant even if solution size is large.

Examples:

- Local search is easy: it is FPT to find a larger independent set in a planar graph with at most k exchanges [Fellows et al. 2008].
- Local search is hard: it is W[1]-hard to check if it is possible to obtain a shorter TSP tour by replacing at most k arcs [M. 2008].

Local search for SAT

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k -neighborhood for q -SAT is FPT.

Local search for SAT

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k -neighborhood for q -SAT is FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k -neighborhood for MAX 2-SAT is W[1]-hard.

$Local$ search for SAT

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k -neighborhood for q -SAT is FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k -neighborhood for MAX 2-SAT is W[1]-hard.

A family of problems:

Theorem [Krokhin and M. 2008]

```
Dichotomy results for MINONES-SAT(Γ).
```
Strict vs. permissive

Something strange: for some problems (e.g., $VERTEX$ COVER on bipartite graphs), local search is hard, even though the problem is polynomial-time solvable.

Strict vs. permissive

Something strange: for some problems (e.g., $VERTEX$ $Cover$ on bipartite graphs), local search is hard, even though the problem is polynomial-time solvable.

Strict *k*-step Local Search

Input: instance *I*, solution x , integer k Find: A solution x' with dist(x, x') $\leq k$ that is "better" than x.

Strict vs. permissive

Something strange: for some problems (e.g., $VERTEX$ $Cover$ on bipartite graphs), local search is hard, even though the problem is polynomial-time solvable.

Strict *k*-step Local Search

Input: instance *I*, solution x , integer k Find: A solution x' with dist(x, x') $\leq k$ that is "better" than x.

Permissive k-step Local Search

- Input: instance *I*, solution x , integer k
- Find: Any solution x' "better" than x , if there is such a solution at distance at most k.

A CSP instance is given by describing the

- **variables**,
- **o** domain of the variables,
- constraints on the variables.

What about CSP instances where the domain is e.g. N?

A CSP instance is given by describing the

- **•** variables.
- **o** domain of the variables.
- **e** constraints on the variables.

What about CSP instances where the domain is e.g. N?

How can we describe in the input a constraint over an infinite domain?

Makes sense only if we considered a restricted, structured class of constraints.

Some interesting classes of constraints over infinite domains:

Equality constraints

- \bullet Domain: \mathbb{Z}
- Constraints: Boolean combinations of $=$
- MINUNSAT dichotomy by [Osipov and Wahlström 2023]:
	- FPT
	- W[1]-hard with constant factor approximation
	- W[1]-hard with no constant factor approximation

Some interesting classes of constraints over infinite domains:

Point algebra/temporal constraints

- Domain: Z
- Constraints: Boolean combinations of \lt , $=$
- P vs. NP-hard dichotomy by [Bodirsky and Kára 2008]
- \bullet Being a directed acyclic graph can be expressed as satisfiability with \lt constraints
- \bullet DIRECTED FEEDBACK ARC SET can be expressed as satisfying all but at most k of the < constraints.
- MINUNSAT: FPT vs. W[1]-hard dichotomy for all subsets $\Gamma \subseteq \{<,\leq,=,\neq\}$ by [Osipov, Pilipczuk, Wahlström 2024]

Some interesting classes of constraints over infinite domains:

Allan's interval algebra/interval constraints

- Domain: intervals on a line, i.e. $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ with $a \leq b$.
- Constraints: precedes, disjoint, overlap, between etc. (13 standard relations)
- MinUnSat: FPT vs. W[1]-hard dichotomy by [Dabrowski et al. 2023]
- What about more general constraints: arbitrary Boolean combinations of \lt , $=$ over the endponts of intervals?

Graphs and hypergraphs related to CSP

Gaifman/primal graph: vertices are the variables, two variables are adjacent if they appear in a common constraint.

Incidence graph: bipartite graph, vertices are the variables and constraints.

Hypergraph: vertices are the variables, constraints are the hyperedges.

$$
I = C_1(x_2, x_1, x_3) \wedge C_2(x_4, x_3) \wedge C_3(x_1, x_4, x_2)
$$

Theorem [Freuder 1990]

For every fixed k, CSP can be solved in polynomial time if the primal graph of the instance has treewidth at most k.

Note: The running time is $|D|^{O(k)}$, which is not FPT parameterized by treewidth.

Theorem [Freuder 1990]

For every fixed k , CSP can be solved in polynomial time if the primal graph of the instance has treewidth at most k.

Note: The running time is $|D|^{O(k)}$, which is not FPT parameterized by treewidth.

We know that binary $CSP(\mathcal{G})$ is polynomial-time solvable for every class $\mathcal G$ of graphs with bounded treewidth. Are there other polynomial cases?

Question: Which graph properties lead to polynomial-time solvable CSP instances? Systematic study:

- Binary CSP: Every constraint is of arity 2.
- CSP(G): problem restricted to binary CSP instances with primal graph in G.
- Which classes G make $CSP(G)$ FPT?
- \bullet E.g., if G is the set of trees, then it is easy, if G is the set of 3-regular graphs, then it is W[1]-hard.

Dichotomy for binary CSP

Complete answer for every class \mathcal{G} :

Theorem [Grohe-Schwentick-Segoufin 2001]

Let G be a computable class of graphs.

- (1) If G has bounded treewidth, then $CSP(G)$ is FPT parameterized by number of variables (in fact, polynomial-time solvable).
- (2) If G has unbounded treewidth, then $CSP(G)$ is W[1]-hard parameterized by number of variables.

Note: In (2), $CSP(\mathcal{G})$ is not necessarily NP-hard.

Dichotomy for binary CSP

Complete answer for every class \mathcal{G} :

Theorem [Grohe-Schwentick-Segoufin 2001]

Let G be a recursively enumerable class of graphs. Assuming FPT \neq W[1], the following are equivalent:

- \bullet Binary CSP(\mathcal{G}) is polynomial-time solvable.
- Binary $CSP(\mathcal{G})$ is FPT parameterized by the number of variables.
- \bullet G has bounded treewidth.

Note: Fixed-parameter tractability does not give us more power here than polynomial-time solvability!

Can you beat treewidth?

The exponent of the running time has to depend on treewidth. But can we do better than $n^{O(tw)}$?

Can you beat treewidth?

The exponent of the running time has to depend on treewidth. But can we do better than $n^{O(tw)}$?

Theorem [M. 2010]

Let G be a recursively enumerable class of graphs. Assuming ETH, there is no $f(k)n^{o(tw/\log tw)}$ algorithm for $\mathsf{CSP}(\mathcal{G})$, where k is the number of variables.
Can you beat treewidth?

The exponent of the running time has to depend on treewidth. But can we do better than $n^{O(tw)}$?

Theorem [M. 2010]

Let G be a recursively enumerable class of graphs. Assuming ETH, there is no $f(k)n^{o(tw/\log tw)}$ algorithm for $\mathsf{CSP}(\mathcal{G})$, where k is the number of variables.

More modern version, with a bound for fixed graph G instead of a class G :

Theorem [Cohen-Addad et al. 2021]

Assuming the ETH, there exists a universal constant α such that for any fixed primal graph G such that tw(G) > 2 , there is no algorithm deciding the binary CSP instances whose primal graph is G in time $O(|D|^{\alpha\cdot \textsf{tw}/\log \textsf{tw}}).$

Combination of parameters

CSP can be parameterized by many (combination of) parameters. Examples:

- CSP is W[1]-hard parameterized by the treewidth of the primal graph.
- CSP is FPT parameterized by the treewidth of the primal graph and the domain size.

Combination of parameters

CSP can be parameterized by many (combination of) parameters. Examples:

- CSP is W[1]-hard parameterized by the treewidth of the primal graph.
- CSP is FPT parameterized by the treewidth of the primal graph and the domain size.

[Samer and Szeider 2010] considered 11 parameters and determined the complexity of CSP by any subset of these parameters.

- tw: treewidth of primal graph
- tw^d: tw of dual graph
- tw[∗] tw of incidence graph
- vars: number of variables
- dom: domain size
- cons: number of constraints

- Fixed-parameter tractability results for SAT and CSPs do exist.
- Choice of parameter is not obvious.
- 0-1 domain vs. finite domain vs. infinite domain
- Some topics:
	- Above average parameterization.
	- **J** ocal search.
	- Parameters related to the graph of the constraints.