
Sparsification and Running Time Aspects of CSPs
a.k.a. “Parameterizing by n”

Magnus Wahlström

Royal Holloway, University of London

PACS 2024

Based on joint work with Victor Lagerkvist

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 1 / 19

The overall topic

CSP(Γ)

Fixed: Constraint language Γ over domain D
Input: Formula F over Γ (conjunction of constraints from Γ) on variable set V
Question: Is there an assignment ϕ : V → D that satisfies F?

How does the fine-grained/exact complexity of CSP(Γ) depend on the language Γ?

3-SAT O(1.3308n), k-SAT O((2−Θ(1/k))n), 1-in-k SAT O(1.1730n) . . .

What can the algebraic methods tell us about this question?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 2 / 19

Outline

1 Partial Polymorphisms

2 Time complexity of CSPs

3 Sparsification

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 3 / 19

Outline

1 Partial Polymorphisms

2 Time complexity of CSPs

3 Sparsification

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 4 / 19

The algebraic method

If relations of Γ1 can be implemented in language Γ2 then CSP(Γ2) is at least as hard as
CSP(Γ1)

1-in-3 SAT (relation R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) is not harder than 3-SAT:

R1/3(x , y , z) ≡ (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ ¬z) ∧ (¬y ∨ ¬z)

If not, then Γ2 enjoys an algebraic invariant that proves that it is structurally more
restricted

R1/3 is preserved by the partial Mal’tsev partial polymorphism

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 5 / 19

The algebraic method

If relations of Γ1 can be implemented in language Γ2 then CSP(Γ2) is at least as hard as
CSP(Γ1)

1-in-3 SAT (relation R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) is not harder than 3-SAT:

R1/3(x , y , z) ≡ (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ ¬z) ∧ (¬y ∨ ¬z)

If not, then Γ2 enjoys an algebraic invariant that proves that it is structurally more
restricted

R1/3 is preserved by the partial Mal’tsev partial polymorphism

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 5 / 19

(Partial/total) polymorphisms

Let R ⊆ Dn be a relation over domain D

Polymorphisms

Polymorphism of R: Operation Dr → D
such that if t1, . . . , tr ∈ R then
p(t1, . . . , tr) ∈ R, e.g. 3-way XOR:

t1 0 0 1 ∈ R
t2 0 1 0 ∈ R
t3 1 0 0 ∈ R

p(t1, t2, t3) 1 1 1 ∈ R

Partial polymorphisms

Partial polymorphism of R: Partial
operation Dr → D such that for
t1, . . . , tR ∈ R, if p(t1, . . . , tr) is defined
then p(t1, . . . , tr) ∈ R, e.g.

t1 0 0 1 ∈ R
t2 0 1 0 ∈ R
t3 1 0 0 ∈ R

p(t1, t2, t3) 1 ⊥ 1 ???

...does not give any conclusions.

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 6 / 19

(Partial/total) polymorphisms

Let R ⊆ Dn be a relation over domain D

Polymorphisms

Polymorphism of R: Operation Dr → D
such that if t1, . . . , tr ∈ R then
p(t1, . . . , tr) ∈ R, e.g. 3-way XOR:

t1 0 0 1 ∈ R
t2 0 1 0 ∈ R
t3 1 0 0 ∈ R

p(t1, t2, t3) 1 1 1 ∈ R

Partial polymorphisms

Partial polymorphism of R: Partial
operation Dr → D such that for
t1, . . . , tR ∈ R, if p(t1, . . . , tr) is defined
then p(t1, . . . , tr) ∈ R, e.g.

t1 0 0 1 ∈ R
t2 0 1 0 ∈ R
t3 1 0 0 ∈ R

p(t1, t2, t3) 1 ⊥ 1 ???

...does not give any conclusions.

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 6 / 19

Algebraic invariant notions

Notions of implementations and invariants over a language Γ:
Invariant Implementations Implementation operations

Polymorphisms pp-definitions
∃Y : R1(X1,Y1) ∧ . . . ∧ Rm(Xm,Ym)

(Xi ⊆ X , Yi ⊆ Y , Ri ∈ Γ)
Classes of polymorphisms

(e.g. p such that
p(x , x , y) = p(y , x , x) = y)

pp-constructions Implementations across domains

Partial polymorphisms qfpp-definitions
R1(X1) ∧ . . . ∧ Rm(Xm),

(Xi ⊆ X , Ri ∈ Γ)
E.g.:

A language Γ can implement a relation R using a qfpp-definition if and only if every
partial polymorphism of Γ also preserves R

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 7 / 19

Algebraic invariant notions

Notions of implementations and invariants over a language Γ:
Invariant Implementations Implementation operations

Polymorphisms pp-definitions
∃Y : R1(X1,Y1) ∧ . . . ∧ Rm(Xm,Ym)

(Xi ⊆ X , Yi ⊆ Y , Ri ∈ Γ)
Classes of polymorphisms

(e.g. p such that
p(x , x , y) = p(y , x , x) = y)

pp-constructions Implementations across domains

Partial polymorphisms qfpp-definitions
R1(X1) ∧ . . . ∧ Rm(Xm),

(Xi ⊆ X , Ri ∈ Γ)
E.g.:

A language Γ can implement a relation R using a qfpp-definition if and only if every
partial polymorphism of Γ also preserves R

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 7 / 19

Algebraic invariant notions

Notions of implementations and invariants over a language Γ:
Invariant Implementations Implementation operations

Polymorphisms pp-definitions
∃Y : R1(X1,Y1) ∧ . . . ∧ Rm(Xm,Ym)

(Xi ⊆ X , Yi ⊆ Y , Ri ∈ Γ)
Classes of polymorphisms

(e.g. p such that
p(x , x , y) = p(y , x , x) = y)

pp-constructions Implementations across domains

Partial polymorphisms qfpp-definitions
R1(X1) ∧ . . . ∧ Rm(Xm),

(Xi ⊆ X , Ri ∈ Γ)
E.g.:

A language Γ can implement a relation R using a qfpp-definition if and only if every
partial polymorphism of Γ also preserves R

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 7 / 19

Algebraic invariant notions

Notions of implementations and invariants over a language Γ:
Invariant Implementations Implementation operations

Polymorphisms pp-definitions
∃Y : R1(X1,Y1) ∧ . . . ∧ Rm(Xm,Ym)

(Xi ⊆ X , Yi ⊆ Y , Ri ∈ Γ)
Classes of polymorphisms

(e.g. p such that
p(x , x , y) = p(y , x , x) = y)

pp-constructions Implementations across domains

Partial polymorphisms qfpp-definitions
R1(X1) ∧ . . . ∧ Rm(Xm),

(Xi ⊆ X , Ri ∈ Γ)
E.g.:

A language Γ can implement a relation R using a qfpp-definition if and only if every
partial polymorphism of Γ also preserves R

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 7 / 19

Outline

1 Partial Polymorphisms

2 Time complexity of CSPs

3 Sparsification

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 8 / 19

CSP(Γ)

Fixed: Constraint language Γ over domain D
Input: Formula F over Γ (conjunction of constraints from Γ) on variable set V
Question: Is there an assignment ϕ : V → D that satisfies F?

Assume CSP(Γ) is NP-hard. How does the running time depend on Γ?

ETH: Time O∗(cn) for some c = c(Γ) – but which c?

Example 3-SAT:

O(1.84n) ⇒ O(1.62n) ⇒ . . . ⇒ O((4/3)n) ⇒ . . . ⇒ O(1.308n) . . .

Questions:

1 How does the value c(Γ) depend on Γ?
2 For which languages is c(Γ) non-trivial, i.e. c(Γ) < |D|?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 9 / 19

CSP(Γ)

Fixed: Constraint language Γ over domain D
Input: Formula F over Γ (conjunction of constraints from Γ) on variable set V
Question: Is there an assignment ϕ : V → D that satisfies F?

Assume CSP(Γ) is NP-hard. How does the running time depend on Γ?

ETH: Time O∗(cn) for some c = c(Γ) – but which c?

Example 3-SAT:

O(1.84n) ⇒ O(1.62n) ⇒ . . . ⇒ O((4/3)n) ⇒ . . . ⇒ O(1.308n) . . .

Questions:

1 How does the value c(Γ) depend on Γ?
2 For which languages is c(Γ) non-trivial, i.e. c(Γ) < |D|?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 9 / 19

Problems with partial polymorphisms

The Question

Can we use algebraic methods to study the running time of CSP(Γ)?

Good news: c(Γ) depends only on the partial polymorphisms of Γ (pPol(Γ))

Problem: pPol(Γ) has awful structure

Uncountably many classes even for D = {0, 1}
A finite NP-hard language Γ needs∗ an infinite number of partial polymorphisms to define it

Any∗ finite set of partial polymorphisms preserves 22
Θ(n)

relations of arity n

Study 3-SAT via pPol(3-CNF): not so much

To make progress, we study languages defined via their partial polymorphisms

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 10 / 19

Problems with partial polymorphisms

The Question

Can we use algebraic methods to study the running time of CSP(Γ)?

Good news: c(Γ) depends only on the partial polymorphisms of Γ (pPol(Γ))

Problem: pPol(Γ) has awful structure

Uncountably many classes even for D = {0, 1}
A finite NP-hard language Γ needs∗ an infinite number of partial polymorphisms to define it

Any∗ finite set of partial polymorphisms preserves 22
Θ(n)

relations of arity n

Study 3-SAT via pPol(3-CNF): not so much

To make progress, we study languages defined via their partial polymorphisms

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 10 / 19

Problems with partial polymorphisms

The Question

Can we use algebraic methods to study the running time of CSP(Γ)?

Good news: c(Γ) depends only on the partial polymorphisms of Γ (pPol(Γ))

Problem: pPol(Γ) has awful structure

Uncountably many classes even for D = {0, 1}
A finite NP-hard language Γ needs∗ an infinite number of partial polymorphisms to define it

Any∗ finite set of partial polymorphisms preserves 22
Θ(n)

relations of arity n

Study 3-SAT via pPol(3-CNF): not so much

To make progress, we study languages defined via their partial polymorphisms

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 10 / 19

Pattern partial polymorphisms

Recall classes of polymorphisms, e.g.:
1 Majority operation: m : D3 → D such that

m(x , x , y) = m(x , y , x) = m(y , x , x) = x for all x , y ∈ D

2 Mal’tsev operation: m : D3 → D such that

m(x , x , y) = m(y , x , x) = y for all x , y

e.g. m(x , y , z) = x − y + z

Partial Mal’tsev operation: m : D3 → D such that

m(x , y , z) =


z x = y

x y = z

⊥ otherwise

Partial majority, partial k-NU, . . .

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 11 / 19

Pattern partial polymorphisms

Recall classes of polymorphisms, e.g.:
1 Majority operation: m : D3 → D such that

m(x , x , y) = m(x , y , x) = m(y , x , x) = x for all x , y ∈ D

2 Mal’tsev operation: m : D3 → D such that

m(x , x , y) = m(y , x , x) = y for all x , y

e.g. m(x , y , z) = x − y + z

Partial Mal’tsev operation: m : D3 → D such that

m(x , y , z) =


z x = y

x y = z

⊥ otherwise

Partial majority, partial k-NU, . . .

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 11 / 19

Results sample – upper bounds

Algorithms from partial polymorphisms

Γ has partial Mal’tsev ppol: CSP(Γ) solved by meet-in-the-middle, O(|D|n/2)
Γ has partial majority ppol: CSP(Γ) solved by fast matrix multiplication, O(|D|(ω/3)n)
Boolean domian, partial k-NU ppol ⇒ local search algorithms (conjecturally)

Total Mal’tsev polymorphism: “behaves like linear equations”

Total majority polymorphism: tractable binary language (e.g. 2-SAT)

Results 1–2 apply in appropriate oracle model

Question

Does any non-trivial pattern partial polymorphism imply that CSP(Γ) is solvable in O∗(cn)
time for some c < |D|? (Non-uniform algorithms are fine.)

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 12 / 19

Results sample – upper bounds

Algorithms from partial polymorphisms

Γ has partial Mal’tsev ppol: CSP(Γ) solved by meet-in-the-middle, O(|D|n/2)
Γ has partial majority ppol: CSP(Γ) solved by fast matrix multiplication, O(|D|(ω/3)n)
Boolean domian, partial k-NU ppol ⇒ local search algorithms (conjecturally)

Total Mal’tsev polymorphism: “behaves like linear equations”

Total majority polymorphism: tractable binary language (e.g. 2-SAT)

Results 1–2 apply in appropriate oracle model

Question

Does any non-trivial pattern partial polymorphism imply that CSP(Γ) is solvable in O∗(cn)
time for some c < |D|? (Non-uniform algorithms are fine.)

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 12 / 19

Results sample – lower bounds

Complexity of inv(p)-SAT

Let p be a “purely partial” polymorphism (which does not imply any total polymorphism).

Let inv(p)-SAT be the SAT problem where the constraints can use any relation R that is
preserved by p (of unbounded arity) given in some suitable white-box representation.

Then there is a constant cp > 1 such that under SETH, no algorithm can solve inv(p)-SAT in
time O((cp − ε)n) for any ε > 0.

We can pad any relation R(X) ⊆ {0, 1}n to a relation

R ′(X ,X ′ = f (X)) ⊆ {0, 1}αn

such that R ′ is preserved by p, for some α > 1.

So SAT on n variables reduces to inv(p)-SAT on αn variables.

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 13 / 19

Results sample – lower bounds

Complexity of inv(p)-SAT

Let p be a “purely partial” polymorphism (which does not imply any total polymorphism).

Let inv(p)-SAT be the SAT problem where the constraints can use any relation R that is
preserved by p (of unbounded arity) given in some suitable white-box representation.

Then there is a constant cp > 1 such that under SETH, no algorithm can solve inv(p)-SAT in
time O((cp − ε)n) for any ε > 0.

We can pad any relation R(X) ⊆ {0, 1}n to a relation

R ′(X ,X ′ = f (X)) ⊆ {0, 1}αn

such that R ′ is preserved by p, for some α > 1.

So SAT on n variables reduces to inv(p)-SAT on αn variables.

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 13 / 19

inv(p)-SAT – summary

Let’s stay with D = {0, 1}.
For one p we have both upper and lower bounds:

Partial Mal’tsev solved in O∗(2n/2) time, not in O(2n/7.29) time under SETH

We can also study “inv(p) analogues” of problems we care about

Partial k-NU operation (k ≥ 4) contains (k − 1)-SAT, not k-SAT
inv(nuk) has a SETH lower bound of (2−Θ(log k/k))n

inv(nu4) has a SETH lower bound of 2n/5.9 ≈ 1.125n

Questions

1 Can the gap for partial Mal’tsev be closed?

2 Can the lower bound for inv(nuk) be lifted to 2−Θ(1/k) to match the conjectured
k-SAT behaviour?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 14 / 19

inv(p)-SAT – summary

Let’s stay with D = {0, 1}.
For one p we have both upper and lower bounds:

Partial Mal’tsev solved in O∗(2n/2) time, not in O(2n/7.29) time under SETH

We can also study “inv(p) analogues” of problems we care about

Partial k-NU operation (k ≥ 4) contains (k − 1)-SAT, not k-SAT
inv(nuk) has a SETH lower bound of (2−Θ(log k/k))n

inv(nu4) has a SETH lower bound of 2n/5.9 ≈ 1.125n

Questions

1 Can the gap for partial Mal’tsev be closed?

2 Can the lower bound for inv(nuk) be lifted to 2−Θ(1/k) to match the conjectured
k-SAT behaviour?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 14 / 19

Interlude - fgpp-definitions

Clement Carbonnel 2022

A functionally guarded pp-definition (fgpp-definition) is a definition

R(x1, . . . , xn) ≡ ∃(y1 = f1(xi1)), . . . , (yt = ft(xit)) : R1(X1,Y1) ∧ . . . ∧ Rm(Xm,Ym)

where fi : D → D are arbitrary functions.

Pattern partial polymorphisms precisely characterize the expressive power under
fgpp-definitions

This appears to work between domains too (cf. pp-constructions)

Does this give a vehicle to study fine-grained (O(nc)) problem complexity?

Zero-weight triangle, min-weight triangle, Orthogonal Vectors, (k, ℓ)-hyperclique

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 15 / 19

Outline

1 Partial Polymorphisms

2 Time complexity of CSPs

3 Sparsification

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 16 / 19

Sparsification and non-redundancy

Sparsification

A sparsification for CSP(Γ) is a kernelization with parameter n:

A polynomial-time reduction that maps an instance I on n variables to an instance I ′ of
total size f (n) that is a yes-instance if and only if I is a yes-instance

Non-redundancy

A language Γ has non-redundancy f (n) if every formula F over Γ with n variables has a
subformula F ′ ⊆ F such that

1 F and F ′ have identical solution spaces

2 F ′ contains at most f (n) constraints

The questions turn out to be practically the same (for NP-hard problems)

What can we say about sparsification/non-redundancy bounds?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 17 / 19

Sparsification and non-redundancy

Sparsification

A sparsification for CSP(Γ) is a kernelization with parameter n:

A polynomial-time reduction that maps an instance I on n variables to an instance I ′ of
total size f (n) that is a yes-instance if and only if I is a yes-instance

Non-redundancy

A language Γ has non-redundancy f (n) if every formula F over Γ with n variables has a
subformula F ′ ⊆ F such that

1 F and F ′ have identical solution spaces

2 F ′ contains at most f (n) constraints

The questions turn out to be practically the same (for NP-hard problems)

What can we say about sparsification/non-redundancy bounds?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 17 / 19

Sparsification and non-redundancy

Sparsification

A sparsification for CSP(Γ) is a kernelization with parameter n:

A polynomial-time reduction that maps an instance I on n variables to an instance I ′ of
total size f (n) that is a yes-instance if and only if I is a yes-instance

Non-redundancy

A language Γ has non-redundancy f (n) if every formula F over Γ with n variables has a
subformula F ′ ⊆ F such that

1 F and F ′ have identical solution spaces

2 F ′ contains at most f (n) constraints

The questions turn out to be practically the same (for NP-hard problems)

What can we say about sparsification/non-redundancy bounds?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 17 / 19

Sparsification – fun facts

k-SAT has no sparsification to size O(nk−ε), ε > 0 unless PH collapses (Dell, van
Melkebeek 2010)

But every other Boolean language of arity k has sparsification/non-redundancy of
O(nk−1) or better, using algebraic encodings (Chen, Jansen, Pieterse 2020)

Some languages, e.g. 1-in-k-SAT, reduce to O(n) size

For every rational number p/q ≥ 1, there is a language Γ (over some domain D) such
that (Jansen, unpublished?)

1 CSP(Γ) can be sparsified to bitsize O(np/q)
2 CSP(Γ) cannot be sparsified to bitsize O(np/q−ε), for any ε > 0 unless PH collapses

Question [LW 2017; CJP 2020; Carbonnel 2022]

Can we (finally!) characterise the languages Γ which allow for O(n)-size sparsification? Even
in the Boolean domain?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 18 / 19

Sparsification – fun facts

k-SAT has no sparsification to size O(nk−ε), ε > 0 unless PH collapses (Dell, van
Melkebeek 2010)

But every other Boolean language of arity k has sparsification/non-redundancy of
O(nk−1) or better, using algebraic encodings (Chen, Jansen, Pieterse 2020)

Some languages, e.g. 1-in-k-SAT, reduce to O(n) size

For every rational number p/q ≥ 1, there is a language Γ (over some domain D) such
that (Jansen, unpublished?)

1 CSP(Γ) can be sparsified to bitsize O(np/q)
2 CSP(Γ) cannot be sparsified to bitsize O(np/q−ε), for any ε > 0 unless PH collapses

Question [LW 2017; CJP 2020; Carbonnel 2022]

Can we (finally!) characterise the languages Γ which allow for O(n)-size sparsification? Even
in the Boolean domain?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 18 / 19

Sparsification – fun facts

k-SAT has no sparsification to size O(nk−ε), ε > 0 unless PH collapses (Dell, van
Melkebeek 2010)

But every other Boolean language of arity k has sparsification/non-redundancy of
O(nk−1) or better, using algebraic encodings (Chen, Jansen, Pieterse 2020)

Some languages, e.g. 1-in-k-SAT, reduce to O(n) size

For every rational number p/q ≥ 1, there is a language Γ (over some domain D) such
that (Jansen, unpublished?)

1 CSP(Γ) can be sparsified to bitsize O(np/q)
2 CSP(Γ) cannot be sparsified to bitsize O(np/q−ε), for any ε > 0 unless PH collapses

Question [LW 2017; CJP 2020; Carbonnel 2022]

Can we (finally!) characterise the languages Γ which allow for O(n)-size sparsification? Even
in the Boolean domain?

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 18 / 19

Non-trivial sparsification, non-Boolean domain

Carbonnel 2022

For every language Γ with constraints of arity r , either

1 Γ fgpp-defines r -clauses and has only the trivial non-redundancy bound O(nr), or

2 Γ has a non-trivial pattern partial polymorphism and has sparsification and
non-redundancy to size O(nr−ε) where ε = 21−r

1 Observation: fgpp-definitions preserve non-redundancy bounds up to a constant factor

2 In the presence of a pattern partial polymorphism, use results from extremal hypergraph
theory to reduce a formula to a non-trivial “basis”

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 19 / 19

Non-trivial sparsification, non-Boolean domain

Carbonnel 2022

For every language Γ with constraints of arity r , either

1 Γ fgpp-defines r -clauses and has only the trivial non-redundancy bound O(nr), or

2 Γ has a non-trivial pattern partial polymorphism and has sparsification and
non-redundancy to size O(nr−ε) where ε = 21−r

1 Observation: fgpp-definitions preserve non-redundancy bounds up to a constant factor

2 In the presence of a pattern partial polymorphism, use results from extremal hypergraph
theory to reduce a formula to a non-trivial “basis”

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 19 / 19

	Partial Polymorphisms
	Time complexity of CSPs
	Sparsification

