Sparsification and Running Time Aspects of CSPs a.k.a. "Parameterizing by *n*"

Magnus Wahlström

Royal Holloway, University of London

PACS 2024

Based on joint work with Victor Lagerkvist

Magnus Wahlström (RHUL)

Sparsification and Running Time Aspects of CSPs

PACS 2024

$CSP(\Gamma)$

Fixed: Constraint language Γ over domain D**Input:** Formula F over Γ (conjunction of constraints from Γ) on variable set V**Question:** Is there an assignment $\phi: V \to D$ that satisfies F?

How does the fine-grained/exact complexity of CSP(Γ) depend on the language Γ?
 3-SAT O(1.3308ⁿ), k-SAT O((2 - Θ(1/k))ⁿ), 1-in-k SAT O(1.1730ⁿ)...

• What can the algebraic methods tell us about this question?

1 Partial Polymorphisms

2 Time complexity of CSPs

3 Sparsification

1 Partial Polymorphisms

2 Time complexity of CSPs

3 Sparsification

- If relations of Γ₁ can be implemented in language Γ₂ then CSP(Γ₂) is at least as hard as CSP(Γ₁)
 - 1-in-3 SAT (relation $R_{1/3} = \{(0,0,1), (0,1,0), (1,0,0)\}$) is not harder than 3-SAT:

$$R_{1/3}(x, y, z) \equiv (x \lor y \lor z) \land (\neg x \lor \neg y) \land (\neg x \lor \neg z) \land (\neg y \lor \neg z)$$

- If not, then Γ₂ enjoys an algebraic invariant that proves that it is structurally more restricted
 - $R_{1/3}$ is preserved by the partial Mal'tsev partial polymorphism

イロト イポト イヨト イヨト

- If relations of Γ₁ can be implemented in language Γ₂ then CSP(Γ₂) is at least as hard as CSP(Γ₁)
 - 1-in-3 SAT (relation $R_{1/3} = \{(0,0,1), (0,1,0), (1,0,0)\}$) is not harder than 3-SAT:

$$R_{1/3}(x, y, z) \equiv (x \lor y \lor z) \land (\neg x \lor \neg y) \land (\neg x \lor \neg z) \land (\neg y \lor \neg z)$$

- If not, then Γ₂ enjoys an algebraic invariant that proves that it is structurally more restricted
 - $R_{1/3}$ is preserved by the partial Mal'tsev partial polymorphism

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

(Partial/total) polymorphisms

Let $R \subseteq D^n$ be a relation over domain D

Polymorphisms

Polymorphism of R: Operation $D^r \to D$ such that if $t_1, \ldots, t_r \in R$ then $p(t_1, \ldots, t_r) \in R$, e.g. 3-way XOR:

t_1	0	0	1	$\in R$
t_2	0	1	0	$\in R$
t_3	1	0	0	$\in R$
$p(t_1, t_2, t_3)$	1	1	1	$\in R$

Partial polymorphism of R : Partial operation $D^r \rightarrow D$ such that for $t_1, \ldots, t_R \in R$, if $p(t_1, \ldots, t_r)$ is defined then $p(t_1, \ldots, t_r) \in R$, e.g.				
t_1			1	$\in R$
t_2		1		$\in R$
t_3	1			$\in R$
$p(t_1, t_2, t_3)$	1		1	

...does not give any conclusions.

(Partial/total) polymorphisms

Let $R \subseteq D^n$ be a relation over domain D

Polymorphisms

Polymorphism of R: Operation $D^r \to D$ such that if $t_1, \ldots, t_r \in R$ then $p(t_1, \ldots, t_r) \in R$, e.g. 3-way XOR:

t_1	0	0	1	$\in R$
t_2	0	1	0	$\in R$
t_3	1	0	0	$\in R$
$p(t_1, t_2, t_3)$	1	1	1	$\in R$

Partial polymorphisms Partial polymorphism of R: Partial operation $D^r \rightarrow D$ such that for $t_1, \ldots, t_R \in R$, if $p(t_1, \ldots, t_r)$ is defined then $p(t_1,\ldots,t_r) \in R$, e.g. $egin{array}{ccccccccc} t_1 & 0 & 0 & 1 & \in R \ t_2 & 0 & 1 & 0 & \in R \end{array}$

...does not give any conclusions.

6/19

Algebraic invariant notions

Notions of implementations and invariants over a language Γ :			
Invariant	Implementations	Implementation operations	
Polymorphisms	pp-definitions	$\exists Y \colon R_1(X_1, Y_1) \land \ldots \land R_m(X_m, Y_m) \ (X_i \subseteq X, Y_i \subseteq Y, R_i \in \Gamma)$	
Classes of polymorphisms (e.g. p such that p(x, x, y) = p(y, x, x) = y)	pp-constructions	Implementations across domains	
Partial polymorphisms	qfpp-definitions	$egin{aligned} R_1(X_1) \wedge \ldots \wedge R_m(X_m), \ (X_i \subseteq X, \; R_i \in \Gamma) \end{aligned}$	
E.g.: A language Γ can implement a relation R using a qfpp-definition if and only if every			

partial polymorphism of Γ also preserves R

イロト イポト イヨト イヨト

Algebraic invariant notions

Notions of implementations and invariants over a language Γ :			
Invariant	Implementations	Implementation operations	
Polymorphisms	pp-definitions	$\exists Y \colon R_1(X_1, Y_1) \land \ldots \land R_m(X_m, Y_m) \ (X_i \subseteq X, Y_i \subseteq Y, R_i \in \Gamma)$	
Classes of polymorphisms (e.g. p such that p(x, x, y) = p(y, x, x) = y)	pp-constructions	Implementations across domains	
Partial polymorphisms E.g.:	qfpp-definitions	$egin{aligned} R_1(X_1) \wedge \ldots \wedge R_m(X_m), \ (X_i \subseteq X, \ R_i \in \Gamma) \end{aligned}$	

A language Γ can implement a relation R using a qfpp-definition if and only if every partial polymorphism of Γ also preserves R

Notions of implementations and invariants over a language Γ :			
Invariant	Implementations	Implementation operations	
Polymorphisms	pp-definitions	$\exists Y \colon R_1(X_1, Y_1) \land \ldots \land R_m(X_m, Y_m) \ (X_i \subseteq X, Y_i \subseteq Y, R_i \in \Gamma)$	
Classes of polymorphisms (e.g. p such that p(x, x, y) = p(y, x, x) = y)	pp-constructions	Implementations across domains	
Partial polymorphisms	qfpp-definitions	$egin{aligned} & R_1(X_1) \wedge \ldots \wedge R_m(X_m), \ & (X_i \subseteq X, \ R_i \in \Gamma) \end{aligned}$	

E.g.:

A language Γ can implement a relation R using a qfpp-definition if and only if every partial polymorphism of Γ also preserves R

→ < ∃ →</p>

Notions of implementations and invariants over a language Γ :			
Invariant	Implementations	Implementation operations	
Polymorphisms	pp-definitions	$\exists Y \colon R_1(X_1, Y_1) \land \ldots \land R_m(X_m, Y_m) \ (X_i \subseteq X, Y_i \subseteq Y, R_i \in \Gamma)$	
Classes of polymorphisms (e.g. p such that p(x, x, y) = p(y, x, x) = y)	pp-constructions	Implementations across domains	
Partial polymorphisms	qfpp-definitions	$egin{aligned} &R_1(X_1)\wedge\ldots\wedge R_m(X_m),\ &(X_i\subseteq X,\ R_i\in\Gamma) \end{aligned}$	
E.g.:			

A language Γ can implement a relation R using a qfpp-definition if and only if every partial polymorphism of Γ also preserves R

1 Partial Polymorphisms

2 Time complexity of CSPs

3 Sparsification

$CSP(\Gamma)$

Fixed: Constraint language Γ over domain D**Input:** Formula F over Γ (conjunction of constraints from Γ) on variable set V**Question:** Is there an assignment $\phi: V \to D$ that satisfies F?

Assume CSP(Γ) is NP-hard. How does the running time depend on Γ?
 ETH: Time O*(cⁿ) for some c = c(Γ) - but which c?

Example **3-SAT**:

$$O(1.84^n) \Rightarrow O(1.62^n) \Rightarrow \ldots \Rightarrow O((4/3)^n) \Rightarrow \ldots \Rightarrow O(1.308^n) \ldots$$

Questions:

- **1** How does the value $c(\Gamma)$ depend on Γ ?
- **2** For which languages is $c(\Gamma)$ non-trivial, i.e. $c(\Gamma) < |D|$?

9/19

A (10) × (10)

$CSP(\Gamma)$

Fixed: Constraint language Γ over domain D**Input:** Formula F over Γ (conjunction of constraints from Γ) on variable set V**Question:** Is there an assignment $\phi: V \to D$ that satisfies F?

Assume CSP(Γ) is NP-hard. How does the running time depend on Γ?
 ETH: Time O*(cⁿ) for some c = c(Γ) - but which c?

Example **3-SAT**:

$$O(1.84^n) \Rightarrow O(1.62^n) \Rightarrow \ldots \Rightarrow O((4/3)^n) \Rightarrow \ldots \Rightarrow O(1.308^n) \ldots$$

Questions:

- **1** How does the value $c(\Gamma)$ depend on Γ ?
- **2** For which languages is $c(\Gamma)$ non-trivial, i.e. $c(\Gamma) < |D|$?

9/19

The Question

Can we use algebraic methods to study the running time of $CSP(\Gamma)$?

- Good news: $c(\Gamma)$ depends only on the partial polymorphisms of Γ (pPol(Γ))
- Problem: pPol(Γ) has awful structure
 - Uncountably many classes even for $D = \{0, 1\}$
 - A finite NP-hard language Γ needs^{*} an infinite number of partial polymorphisms to define it
 - Any^{*} finite set of partial polymorphisms preserves $2^{2^{\Theta(n)}}$ relations of arity n
- Study 3-SAT via pPol(3-CNF): not so much

To make progress, we study languages defined via their partial polymorphisms

The Question

Can we use algebraic methods to study the running time of $\mathsf{CSP}(\Gamma)?$

- Good news: $c(\Gamma)$ depends only on the partial polymorphisms of Γ (pPol(Γ))
- Problem: pPol(Γ) has awful structure
 - Uncountably many classes even for $D = \{0, 1\}$
 - A finite NP-hard language Γ needs^{*} an infinite number of partial polymorphisms to define it
 - Any^{*} finite set of partial polymorphisms preserves $2^{2^{\Theta(n)}}$ relations of arity n
- Study 3-SAT via pPol(3-CNF): not so much

To make progress, we study languages defined via their partial polymorphisms

The Question

Can we use algebraic methods to study the running time of $\mathsf{CSP}(\Gamma)?$

- Good news: $c(\Gamma)$ depends only on the partial polymorphisms of Γ (pPol(Γ))
- Problem: pPol(Γ) has awful structure
 - Uncountably many classes even for $D = \{0, 1\}$
 - A finite NP-hard language Γ needs^{*} an infinite number of partial polymorphisms to define it
 - Any^{*} finite set of partial polymorphisms preserves $2^{2^{\Theta(n)}}$ relations of arity n
- Study 3-SAT via pPol(3-CNF): not so much
- To make progress, we study languages defined via their partial polymorphisms

Pattern partial polymorphisms

• Recall classes of polymorphisms, e.g.: • Majority operation: $m: D^3 \rightarrow D$ such that

$$m(x,x,y)=m(x,y,x)=m(y,x,x)=x \hspace{1em}$$
 for all $x,y\in D$

2 Mal'tsev operation: $m: D^3 \rightarrow D$ such that

$$m(x,x,y) = m(y,x,x) = y$$
 for all x,y

e.g. m(x, y, z) = x - y + z

Partial Mal'tsev operation: $m: D^3 \rightarrow D$ such that

$$m(x, y, z) = \begin{cases} z & x = y \\ x & y = z \\ \bot & \text{otherwise} \end{cases}$$

Partial majority, partial k-NU, ...

Magnus Wahlström (RHUL)

글 제 제 글 제

11/19

Pattern partial polymorphisms

• Recall classes of polymorphisms, e.g.: • Majority operation: $m: D^3 \rightarrow D$ such that

$$m(x,x,y)=m(x,y,x)=m(y,x,x)=x \hspace{1em}$$
 for all $x,y\in D$

2 Mal'tsev operation: $m: D^3 \rightarrow D$ such that

$$m(x,x,y) = m(y,x,x) = y$$
 for all x,y

e.g. m(x, y, z) = x - y + z

• Partial Mal'tsev operation: $m \colon D^3 \to D$ such that

$$m(x, y, z) = \begin{cases} z & x = y \\ x & y = z \\ \bot & \text{otherwise} \end{cases}$$

Partial majority, partial k-NU, ...

PACS 2024

11 / 19

Results sample – upper bounds

Algorithms from partial polymorphisms

- Γ has partial Mal'tsev ppol: CSP(Γ) solved by meet-in-the-middle, $O(|D|^{n/2})$
- Γ has partial majority ppol: CSP(Γ) solved by fast matrix multiplication, $O(|D|^{(\omega/3)n})$
- Boolean domian, partial k-NU ppol \Rightarrow local search algorithms (conjecturally)
- Total Mal'tsev polymorphism: "behaves like linear equations"
- Total majority polymorphism: tractable binary language (e.g. 2-SAT)
- Results 1–2 apply in appropriate oracle model

Question

Does any non-trivial pattern partial polymorphism imply that $CSP(\Gamma)$ is solvable in $O^*(c^n)$ time for some c < |D|? (Non-uniform algorithms are fine.)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Results sample – upper bounds

Algorithms from partial polymorphisms

- Γ has partial Mal'tsev ppol: CSP(Γ) solved by meet-in-the-middle, $O(|D|^{n/2})$
- Γ has partial majority ppol: CSP(Γ) solved by fast matrix multiplication, $O(|D|^{(\omega/3)n})$
- Boolean domian, partial k-NU ppol \Rightarrow local search algorithms (conjecturally)
- Total Mal'tsev polymorphism: "behaves like linear equations"
- Total majority polymorphism: tractable binary language (e.g. 2-SAT)
- Results 1–2 apply in appropriate oracle model

Question

Does any non-trivial pattern partial polymorphism imply that $CSP(\Gamma)$ is solvable in $O^*(c^n)$ time for some c < |D|? (Non-uniform algorithms are fine.)

Complexity of inv(p)-SAT

Let p be a "purely partial" polymorphism (which does not imply any total polymorphism).

Let inv(p)-SAT be the SAT problem where the constraints can use any relation R that is preserved by p (of unbounded arity) given in some suitable white-box representation.

Then there is a constant $c_p > 1$ such that under SETH, no algorithm can solve inv(p)-SAT in time $O((c_p - \varepsilon)^n)$ for any $\varepsilon > 0$.

• We can pad any relation $R(X) \subseteq \{0,1\}^n$ to a relation

 $R'(X,X'=f(X))\subseteq \{0,1\}^{\alpha n}$

such that R' is preserved by p, for some $\alpha > 1$.

So SAT on *n* variables reduces to inv(p)-SAT on αn variables.

Complexity of inv(p)-SAT

Let p be a "purely partial" polymorphism (which does not imply any total polymorphism).

Let inv(p)-SAT be the SAT problem where the constraints can use any relation R that is preserved by p (of unbounded arity) given in some suitable white-box representation.

Then there is a constant $c_p > 1$ such that under SETH, no algorithm can solve inv(p)-SAT in time $O((c_p - \varepsilon)^n)$ for any $\varepsilon > 0$.

• We can pad any relation $R(X) \subseteq \{0,1\}^n$ to a relation

$$R'(X,X'=f(X))\subseteq \{0,1\}^{\alpha n}$$

such that R' is preserved by p, for some $\alpha > 1$.

• So SAT on *n* variables reduces to inv(p)-SAT on αn variables.

Let's stay with $D = \{0, 1\}$.

- For one *p* we have both upper and lower bounds:
 - Partial Mal'tsev solved in $O^*(2^{n/2})$ time, not in $O(2^{n/7.29})$ time under SETH
- We can also study "inv(p) analogues" of problems we care about
 - Partial k-NU operation (k > 4) contains (k 1)-SAT, not k-SAT
 - inv(nu_k) has a SETH lower bound of (2 − Θ(log k/k))ⁿ
 inv(nu₄) has a SETH lower bound of 2^{n/5.9} ≈ 1.125ⁿ

Let's stay with $D = \{0, 1\}$.

- For one *p* we have both upper and lower bounds:
 - Partial Mal'tsev solved in $O^*(2^{n/2})$ time, not in $O(2^{n/7.29})$ time under SETH
- We can also study "inv(p) analogues" of problems we care about
 - Partial k-NU operation (k > 4) contains (k 1)-SAT, not k-SAT
 - inv(nu_k) has a SETH lower bound of (2 − Θ(log k/k))ⁿ
 inv(nu₄) has a SETH lower bound of 2^{n/5.9} ≈ 1.125ⁿ

Questions

- 1 Can the gap for partial Mal'tsev be closed?
- 2 Can the lower bound for inv(nu_k) be lifted to $2 \Theta(1/k)$ to match the conjectured k-SAT behaviour?

14/19

(1日) (1日) (1日)

Interlude - fgpp-definitions

Clement Carbonnel 2022

A functionally guarded pp-definition (fgpp-definition) is a definition

 $R(x_1,...,x_n) \equiv \exists (y_1 = f_1(x_{i_1})), ..., (y_t = f_t(x_{i_t})) : R_1(X_1,Y_1) \land ... \land R_m(X_m,Y_m)$

where $f_i: D \rightarrow D$ are arbitrary functions.

Pattern partial polymorphisms precisely characterize the expressive power under fgpp-definitions

- This appears to work between domains too (cf. pp-constructions)
- Does this give a vehicle to study fine-grained $(O(n^c))$ problem complexity?
 - Zero-weight triangle, min-weight triangle, Orthogonal Vectors, (k, ℓ) -hyperclique

1 Partial Polymorphisms

2 Time complexity of CSPs

3 Sparsification

Sparsification and non-redundancy

Sparsification

A sparsification for $CSP(\Gamma)$ is a kernelization with parameter *n*:

A polynomial-time reduction that maps an instance I on n variables to an instance I' of total size f(n) that is a yes-instance if and only if I is a yes-instance

Non-redundancy

A language Γ has non-redundancy f(n) if every formula F over Γ with n variables has a subformula $F' \subseteq F$ such that

- **1** F and F' have identical solution spaces
- **2** F' contains at most f(n) constraints

• The questions turn out to be practically the same (for NP-hard problems)

What can we say about sparsification/non-redundancy bounds?

Magnus Wahlström (RHUL)

Sparsification and Running Time Aspects of CSPs

PACS 2024

イロト イヨト イヨト

Sparsification and non-redundancy

Sparsification

A sparsification for $CSP(\Gamma)$ is a kernelization with parameter *n*:

A polynomial-time reduction that maps an instance I on n variables to an instance I' of total size f(n) that is a yes-instance if and only if I is a yes-instance

Non-redundancy

A language Γ has non-redundancy f(n) if every formula F over Γ with n variables has a subformula $F' \subseteq F$ such that

- **1** F and F' have identical solution spaces
- **2** F' contains at most f(n) constraints
- The questions turn out to be practically the same (for NP-hard problems)

What can we say about sparsification/non-redundancy bounds?

Sparsification and non-redundancy

Sparsification

A sparsification for $CSP(\Gamma)$ is a kernelization with parameter *n*:

A polynomial-time reduction that maps an instance I on n variables to an instance I' of total size f(n) that is a yes-instance if and only if I is a yes-instance

Non-redundancy

A language Γ has non-redundancy f(n) if every formula F over Γ with n variables has a subformula $F' \subseteq F$ such that

- **1** F and F' have identical solution spaces
- **2** F' contains at most f(n) constraints
- The questions turn out to be practically the same (for NP-hard problems)
- What can we say about sparsification/non-redundancy bounds?

Sparsification – fun facts

- k-SAT has no sparsification to size O(n^{k-ε}), ε > 0 unless PH collapses (Dell, van Melkebeek 2010)
- But every other Boolean language of arity k has sparsification/non-redundancy of O(n^{k-1}) or better, using algebraic encodings (Chen, Jansen, Pieterse 2020)
- Some languages, e.g. 1-in-k-SAT, reduce to O(n) size
- For every rational number $p/q \ge 1$, there is a language Γ (over some domain D) such that (Jansen, unpublished?)
 - **1** CSP(Γ) can be sparsified to bitsize $O(n^{p/q})$
 - 2 CSP(Γ) cannot be sparsified to bitsize $O(n^{p/q-arepsilon})$, for any arepsilon>0 unless PH collapses

Question [LW 2017; CJP 2020; Carbonnel 2022]

Can we (finally!) characterise the languages Γ which allow for O(n)-size sparsification? Even in the Boolean domain?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Sparsification – fun facts

- k-SAT has no sparsification to size O(n^{k-ε}), ε > 0 unless PH collapses (Dell, van Melkebeek 2010)
- But every other Boolean language of arity k has sparsification/non-redundancy of O(n^{k-1}) or better, using algebraic encodings (Chen, Jansen, Pieterse 2020)
- Some languages, e.g. 1-in-k-SAT, reduce to O(n) size
- For every rational number p/q ≥ 1, there is a language Γ (over some domain D) such that (Jansen, unpublished?)
 - **1** CSP(Γ) can be sparsified to bitsize $O(n^{p/q})$
 - **2** CSP(Γ) cannot be sparsified to bitsize $O(n^{p/q-\varepsilon})$, for any $\varepsilon > 0$ unless PH collapses

Question [LW 2017; CJP 2020; Carbonnel 2022]

Can we (finally!) characterise the languages Γ which allow for O(n)-size sparsification? Even in the Boolean domain?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Sparsification – fun facts

- k-SAT has no sparsification to size O(n^{k-ε}), ε > 0 unless PH collapses (Dell, van Melkebeek 2010)
- But every other Boolean language of arity k has sparsification/non-redundancy of O(n^{k-1}) or better, using algebraic encodings (Chen, Jansen, Pieterse 2020)
- Some languages, e.g. 1-in-k-SAT, reduce to O(n) size
- For every rational number p/q ≥ 1, there is a language Γ (over some domain D) such that (Jansen, unpublished?)
 - **1** CSP(Γ) can be sparsified to bitsize $O(n^{p/q})$
 - **2** CSP(Γ) cannot be sparsified to bitsize $O(n^{p/q-\varepsilon})$, for any $\varepsilon > 0$ unless PH collapses

Question [LW 2017; CJP 2020; Carbonnel 2022]

Can we (finally!) characterise the languages Γ which allow for O(n)-size sparsification? Even in the Boolean domain?

イロト 不得下 イヨト イヨト

Carbonnel 2022

For every language Γ with constraints of arity r, either

- **1** Γ fgpp-defines *r*-clauses and has only the trivial non-redundancy bound $O(n^r)$, or
- Γ has a non-trivial pattern partial polymorphism and has sparsification and non-redundancy to size O(n^{r-ε}) where ε = 2^{1-r}

1 Observation: fgpp-definitions preserve non-redundancy bounds up to a constant factor

In the presence of a pattern partial polymorphism, use results from extremal hypergraph theory to reduce a formula to a non-trivial "basis"

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Carbonnel 2022

For every language Γ with constraints of arity r, either

- **1** Γ fgpp-defines *r*-clauses and has only the trivial non-redundancy bound $O(n^r)$, or
- Γ has a non-trivial pattern partial polymorphism and has sparsification and non-redundancy to size O(n^{r-ε}) where ε = 2^{1-r}
- **1** Observation: fgpp-definitions preserve non-redundancy bounds up to a constant factor
- 2 In the presence of a pattern partial polymorphism, use results from extremal hypergraph theory to reduce a formula to a non-trivial "basis"