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The overall topic

CSP(Γ)

Fixed: Constraint language Γ over domain D
Input: Formula F over Γ (conjunction of constraints from Γ) on variable set V
Question: Is there an assignment ϕ : V → D that satisfies F?

How does the fine-grained/exact complexity of CSP(Γ) depend on the language Γ?

3-SAT O(1.3308n), k-SAT O((2−Θ(1/k))n), 1-in-k SAT O(1.1730n) . . .

What can the algebraic methods tell us about this question?
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The algebraic method

If relations of Γ1 can be implemented in language Γ2 then CSP(Γ2) is at least as hard as
CSP(Γ1)

1-in-3 SAT (relation R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) is not harder than 3-SAT:

R1/3(x , y , z) ≡ (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ ¬z) ∧ (¬y ∨ ¬z)

If not, then Γ2 enjoys an algebraic invariant that proves that it is structurally more
restricted

R1/3 is preserved by the partial Mal’tsev partial polymorphism
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(Partial/total) polymorphisms

Let R ⊆ Dn be a relation over domain D

Polymorphisms

Polymorphism of R: Operation Dr → D
such that if t1, . . . , tr ∈ R then
p(t1, . . . , tr ) ∈ R, e.g. 3-way XOR:

t1 0 0 1 ∈ R
t2 0 1 0 ∈ R
t3 1 0 0 ∈ R

p(t1, t2, t3) 1 1 1 ∈ R

Partial polymorphisms

Partial polymorphism of R: Partial
operation Dr → D such that for
t1, . . . , tR ∈ R, if p(t1, . . . , tr ) is defined
then p(t1, . . . , tr ) ∈ R, e.g.

t1 0 0 1 ∈ R
t2 0 1 0 ∈ R
t3 1 0 0 ∈ R

p(t1, t2, t3) 1 ⊥ 1 ???

...does not give any conclusions.
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Algebraic invariant notions

Notions of implementations and invariants over a language Γ:
Invariant Implementations Implementation operations

Polymorphisms pp-definitions
∃Y : R1(X1,Y1) ∧ . . . ∧ Rm(Xm,Ym)

(Xi ⊆ X , Yi ⊆ Y , Ri ∈ Γ)
Classes of polymorphisms

(e.g. p such that
p(x , x , y) = p(y , x , x) = y)

pp-constructions Implementations across domains

Partial polymorphisms qfpp-definitions
R1(X1) ∧ . . . ∧ Rm(Xm),

(Xi ⊆ X , Ri ∈ Γ)
E.g.:

A language Γ can implement a relation R using a qfpp-definition if and only if every
partial polymorphism of Γ also preserves R
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CSP(Γ)

Fixed: Constraint language Γ over domain D
Input: Formula F over Γ (conjunction of constraints from Γ) on variable set V
Question: Is there an assignment ϕ : V → D that satisfies F?

Assume CSP(Γ) is NP-hard. How does the running time depend on Γ?

ETH: Time O∗(cn) for some c = c(Γ) – but which c?

Example 3-SAT:

O(1.84n) ⇒ O(1.62n) ⇒ . . . ⇒ O((4/3)n) ⇒ . . . ⇒ O(1.308n) . . .

Questions:

1 How does the value c(Γ) depend on Γ?
2 For which languages is c(Γ) non-trivial, i.e. c(Γ) < |D|?
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Problems with partial polymorphisms

The Question

Can we use algebraic methods to study the running time of CSP(Γ)?

Good news: c(Γ) depends only on the partial polymorphisms of Γ (pPol(Γ))

Problem: pPol(Γ) has awful structure

Uncountably many classes even for D = {0, 1}
A finite NP-hard language Γ needs∗ an infinite number of partial polymorphisms to define it

Any∗ finite set of partial polymorphisms preserves 22
Θ(n)

relations of arity n

Study 3-SAT via pPol(3-CNF): not so much

To make progress, we study languages defined via their partial polymorphisms
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Pattern partial polymorphisms

Recall classes of polymorphisms, e.g.:
1 Majority operation: m : D3 → D such that

m(x , x , y) = m(x , y , x) = m(y , x , x) = x for all x , y ∈ D

2 Mal’tsev operation: m : D3 → D such that

m(x , x , y) = m(y , x , x) = y for all x , y

e.g. m(x , y , z) = x − y + z

Partial Mal’tsev operation: m : D3 → D such that

m(x , y , z) =


z x = y

x y = z

⊥ otherwise

Partial majority, partial k-NU, . . .
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Results sample – upper bounds

Algorithms from partial polymorphisms

Γ has partial Mal’tsev ppol: CSP(Γ) solved by meet-in-the-middle, O(|D|n/2)
Γ has partial majority ppol: CSP(Γ) solved by fast matrix multiplication, O(|D|(ω/3)n)
Boolean domian, partial k-NU ppol ⇒ local search algorithms (conjecturally)

Total Mal’tsev polymorphism: “behaves like linear equations”

Total majority polymorphism: tractable binary language (e.g. 2-SAT)

Results 1–2 apply in appropriate oracle model

Question

Does any non-trivial pattern partial polymorphism imply that CSP(Γ) is solvable in O∗(cn)
time for some c < |D|? (Non-uniform algorithms are fine.)
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Results sample – lower bounds

Complexity of inv(p)-SAT

Let p be a “purely partial” polymorphism (which does not imply any total polymorphism).

Let inv(p)-SAT be the SAT problem where the constraints can use any relation R that is
preserved by p (of unbounded arity) given in some suitable white-box representation.

Then there is a constant cp > 1 such that under SETH, no algorithm can solve inv(p)-SAT in
time O((cp − ε)n) for any ε > 0.

We can pad any relation R(X ) ⊆ {0, 1}n to a relation

R ′(X ,X ′ = f (X )) ⊆ {0, 1}αn

such that R ′ is preserved by p, for some α > 1.

So SAT on n variables reduces to inv(p)-SAT on αn variables.
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inv(p)-SAT – summary

Let’s stay with D = {0, 1}.
For one p we have both upper and lower bounds:

Partial Mal’tsev solved in O∗(2n/2) time, not in O(2n/7.29) time under SETH

We can also study “inv(p) analogues” of problems we care about

Partial k-NU operation (k ≥ 4) contains (k − 1)-SAT, not k-SAT
inv(nuk) has a SETH lower bound of (2−Θ(log k/k))n

inv(nu4) has a SETH lower bound of 2n/5.9 ≈ 1.125n

Questions

1 Can the gap for partial Mal’tsev be closed?

2 Can the lower bound for inv(nuk) be lifted to 2−Θ(1/k) to match the conjectured
k-SAT behaviour?
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Interlude - fgpp-definitions

Clement Carbonnel 2022

A functionally guarded pp-definition (fgpp-definition) is a definition

R(x1, . . . , xn) ≡ ∃(y1 = f1(xi1)), . . . , (yt = ft(xit )) : R1(X1,Y1) ∧ . . . ∧ Rm(Xm,Ym)

where fi : D → D are arbitrary functions.

Pattern partial polymorphisms precisely characterize the expressive power under
fgpp-definitions

This appears to work between domains too (cf. pp-constructions)

Does this give a vehicle to study fine-grained (O(nc)) problem complexity?

Zero-weight triangle, min-weight triangle, Orthogonal Vectors, (k, ℓ)-hyperclique . . . . . .

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 15 / 19



Outline

1 Partial Polymorphisms

2 Time complexity of CSPs

3 Sparsification

Magnus Wahlström (RHUL) Sparsification and Running Time Aspects of CSPs PACS 2024 16 / 19



Sparsification and non-redundancy

Sparsification

A sparsification for CSP(Γ) is a kernelization with parameter n:

A polynomial-time reduction that maps an instance I on n variables to an instance I ′ of
total size f (n) that is a yes-instance if and only if I is a yes-instance

Non-redundancy

A language Γ has non-redundancy f (n) if every formula F over Γ with n variables has a
subformula F ′ ⊆ F such that

1 F and F ′ have identical solution spaces

2 F ′ contains at most f (n) constraints

The questions turn out to be practically the same (for NP-hard problems)

What can we say about sparsification/non-redundancy bounds?
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Sparsification – fun facts

k-SAT has no sparsification to size O(nk−ε), ε > 0 unless PH collapses (Dell, van
Melkebeek 2010)

But every other Boolean language of arity k has sparsification/non-redundancy of
O(nk−1) or better, using algebraic encodings (Chen, Jansen, Pieterse 2020)

Some languages, e.g. 1-in-k-SAT, reduce to O(n) size

For every rational number p/q ≥ 1, there is a language Γ (over some domain D) such
that (Jansen, unpublished?)

1 CSP(Γ) can be sparsified to bitsize O(np/q)
2 CSP(Γ) cannot be sparsified to bitsize O(np/q−ε), for any ε > 0 unless PH collapses

Question [LW 2017; CJP 2020; Carbonnel 2022]

Can we (finally!) characterise the languages Γ which allow for O(n)-size sparsification? Even
in the Boolean domain?
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Non-trivial sparsification, non-Boolean domain

Carbonnel 2022

For every language Γ with constraints of arity r , either

1 Γ fgpp-defines r -clauses and has only the trivial non-redundancy bound O(nr ), or

2 Γ has a non-trivial pattern partial polymorphism and has sparsification and
non-redundancy to size O(nr−ε) where ε = 21−r

1 Observation: fgpp-definitions preserve non-redundancy bounds up to a constant factor

2 In the presence of a pattern partial polymorphism, use results from extremal hypergraph
theory to reduce a formula to a non-trivial “basis”
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