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CSP dichotomy

Theorem (Bulatov, Zhuk, 2017)

For every finite D and Γ, the corresponding CSP is either
NP-complete and polynomial time solvable.

MINCSP(D, Γ): Can you delete k constraints to make the
instance satisfiable?

• Interesting if CSP(D, Γ) is P-time.
• Trivial nO(k) algorithm.
• Is it FPT parameterized by k?
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Min SAT

MINCSP(D, Γ): Can you delete k constraints to make the
instance satisfiable?

• D = {0, 1}, Γ = {x ̸= y}.

• Edge Bipartization!

• D = {0, 1}, Γ = {x = 0, x = 1, x = y}.

• Undirected Minimum Cut!

• D = {0, 1}, Γ = {x→ 0, 1→ x, x→ y}.

• Directed Minimum Cut!

• D = {0, 1}, Γ = {x→ 0, 1→ x, (x→ y) ∧ (u→ v)}.

• Bundled Cut with bundles of size 2!
W[1]-hard (Marx, Razgon 2009)

• D = {0, 1},
Γ = {x→ 0, 1→ x, (x→ y) ∧ (y→ z) ∧ (z→ v)}.

• 3-Chain SAT!
FPT status was open for some time.
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Minimum (s, t)-cut

s t
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• Minimum (s, t)-cut problem: P-time.

• Still P-time if you add weights (capacities).
• What about bi-objective?

• Cardinality ≤ k. (Figure: k = 3.)
• Minimum weight.

• This version is NP-hard.
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Bi-objective (s, t)-cut

s t
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Bi-objective (s, t)-Cut

Input: digraph G, s, t ∈ V(G), ω : E(G)→ Z+, k, W ∈ Z.
Question: is there an (s, t)-cut Z with |Z| ≤ k and ω(Z) ≤ W.

• Figure: k = 3, W = 8 −→ YES.
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• NP-hard.
• FPT when parameterized by k + W.

• Multi-budgeted important separators.
• Kratsch, Li, Marx, P., Wahlström, IPEC 2018.

• Parameterization by k only?
• Undirected: can hammer down with randomized

contractions / treewidth reductions.
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• Important observation: P-time for k = λG(s, t).
• Example: k = 2.

• Set

M := 1 + ∑
e∈E(G)

ω(e),

cap(e) := M + ω(e),

and ask for cut of capacity ≤ kM + W.
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Directed flow-augmentation
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Theorem (Kim, Kratsch, P., Wahlström)

There exists a randomized polynomial-time algorithm that, given a
digraph G, s, t ∈ V(G), and k ∈ Z, outputs A ⊆ V(G)×V(G) so
that for every minimal (s, t)-cut Z of |Z| ≤ k, with probability
2−O(k

4 log k) the set Z is a minimum (s, t)-cut in G + A.
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Solving bi-objective (s, t)-cut

Theorem (Kim, Kratsch, P., Wahlström)

There exists a randomized polynomial-time algorithm that, given a
digraph G, s, t ∈ V(G), and k ∈ Z, outputs A ⊆ V(G)×V(G) so
that for every minimal (s, t)-cut Z of |Z| ≤ k, with probability
2−O(k

4 log k) the set Z is a minimum (s, t)-cut in G + A.

• Repeat 2O(k
4 log k) times:

• Invoke flow-augmentation, obtaining A.
• Find min-weight solution of cardinality λG+A(s, t) in G + A.

• BI-OBJECTIVE (s, t)-CUT is randomized FPT when
parameterized by k.
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There exists a randomized polynomial-time algorithm that, given a
digraph G, s, t ∈ V(G), and k ∈ Z, outputs A ⊆ V(G)×V(G) so
that for every minimal (s, t)-cut Z of |Z| ≤ k, with probability
2−O(k

4 log k) the set Z is a minimum (s, t)-cut in G + A.

• Exponent not optimized, but seems hard to get o(k2).

• No real obstacle to derandomize.
• Stack of color-coding tricks.
• Derandomization on arXiv.

• Works in slightly more general setting of star (s, t)-cut.
• (s, t)-cut whose every arc goes from reachable-from-s to

non-reachable-from-s.

• Undirected graphs: 2−O(k log k) success probability.
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PoV: space of all mincuts

s t

P1

P2

P3

P4

P5

P6

P7

• Minimum cut: one edge per flow path.
Path Pi ∼ variable xi where it is cut.

• Path Q from u ∈ Pi to v ∈ Pj, edge-disjoint with the flow.
• xi ≤ u∨ xj ≥ v.
• Write such clause for every choice of (i, j, u, v) for ∃Q.
• Space of all CSP solutions ≡ space of all st-mincuts.
• Flow-augmentation: cover the space of minimal st-cuts of

size ≤ k with small number of such CSP instances.
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Bundled Cut
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Bundled cut
Input: digraph G, s, t ∈ V(G), k ∈ Z, family B of pairwise
disjoint subsets of E(G).
Question: does there exist a minimal (s, t)-cut Z ⊆ ⋃B with
|{B ∈ B | B∩ Z ̸= ∅}| ≤ k.

Figure: solution of cost 2.
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Bundled cut
Input: digraph G, s, t ∈ V(G), k ∈ Z, family B of pairwise
disjoint subsets of E(G).
Question: does there exist a minimal (s, t)-cut Z ⊆ ⋃B with
|{B ∈ B | B∩ Z ̸= ∅}| ≤ k.

All B ∈ B singletons −→minimum (s, t)-cut.
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Bundled cut
Input: digraph G, s, t ∈ V(G), k ∈ Z, family B of pairwise
disjoint subsets of E(G).
Question: does there exist a minimal (s, t)-cut Z ⊆ ⋃B with
|{B ∈ B | B∩ Z ̸= ∅}| ≤ k.

Every B ∈ B of size at most 2 −→W[1]-hard with param. k.
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Bundled cut
Input: digraph G, s, t ∈ V(G), k ∈ Z, family B of pairwise
disjoint subsets of E(G).
Question: does there exist a minimal (s, t)-cut Z ⊆ ⋃B with
|{B ∈ B | B∩ Z ̸= ∅}| ≤ k.

Every B ∈ B is a path of length ≤ ℓ −→ ℓ-CHAIN SAT.
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Chain SAT

s t

.

B

A

B

C

B
.

D

E
F

D

E

F

.

.

G

H
I

G

H J
I

K

J

L

K
K

.

M

.

A

B

C

D

E
.

F

G
H

I

J

K

.

.

L

M
N

O

P Q

R
S

T

U

V
W

.

X

.

Z

A

B

C

B
.

D

E
F

D

E

F

.

.

G

H
I

G

H J
I

K

J

L

K
Y

.

M

ℓ-Chain SAT
Input: digraph G, s, t ∈ V(G), k ∈ Z, family B of pairwise
disjoint subsets of E(G), each being a path of length ≤ ℓ.
Question: does there exist a minimal (s, t)-cut Z ⊆ ⋃B with
|{B ∈ B | B∩ Z ̸= ∅}| ≤ k.

Figure: ℓ = 3.
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ℓ-Chain SAT
Input: digraph G, s, t ∈ V(G), k ∈ Z, family B of pairwise
disjoint subsets of E(G), each being a path of length ≤ ℓ.
Question: does there exist a minimal (s, t)-cut Z ⊆ ⋃B with
|{B ∈ B | B∩ Z ̸= ∅}| ≤ k.

Case ℓ = 1: MINIMUM (s, t)-CUT
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ℓ-Chain SAT
Input: digraph G, s, t ∈ V(G), k ∈ Z, family B of pairwise
disjoint subsets of E(G), each being a path of length ≤ ℓ.
Question: does there exist a minimal (s, t)-cut Z ⊆ ⋃B with
|{B ∈ B | B∩ Z ̸= ∅}| ≤ k.

Case ℓ = 2: still MINIMUM (s, t)-CUT.
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ℓ-Chain SAT
Input: digraph G, s, t ∈ V(G), k ∈ Z, family B of pairwise
disjoint subsets of E(G), each being a path of length ≤ ℓ.
Question: does there exist a minimal (s, t)-cut Z ⊆ ⋃B with
|{B ∈ B | B∩ Z ̸= ∅}| ≤ k.

Case ℓ = 3: starts to be interesting!
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3-Chain SAT
Input: digraph G, s, t ∈ V(G), k ∈ Z, family B of pairwise
disjoint subsets of E(G), each being a path of length ≤ 3.
Question: does there exist a minimal (s, t)-cut Z ⊆ ⋃B with
|{B ∈ B | B∩ Z ̸= ∅}| ≤ k.

Focus on case ℓ = 3.
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3-Chain SAT
Input: digraph G, s, t ∈ V(G), k ∈ Z, family B of pairwise
disjoint subsets of E(G), each being a path of length ≤ 3.
Question: does there exist a minimal (s, t)-cut Z ⊆ ⋃B with
|{B ∈ B | B∩ Z ̸= ∅}| ≤ k.

Flow-augmentation: focus on the case Z is a mincut (|Z| ≤ 2k).
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3-Chain SAT

s t

P1

P2

P3

P4

P5

P6

P7

• Guess how cuts on paths group in B.
• On one pair, candidates cannot cross.
• Collapse pair into one flow path.
• The same (P-time) description as the space of all mincuts.
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ℓ-Chain SAT

Theorem (Kim, Kratsch, P., Wahlström)

CHAIN ℓ-SAT is FPT when param. by k and ℓ.

Works also in the weighted setting.
(Every B ∈ B has its weight and we do not want to exceed total
weight budget.)

Works for slightly more general problem.

Theorem (Kim, Kratsch, P., Wahlström)

(WEIGHTED) BUNDLED CUT WITH PAIRWISE LINKED

DELETABLE EDGES is FPT when param. by k and maximum
bundle size.

For every B ∈ B and e, f ∈ B, there exists a directed path
between an endpoint of e and an endpoint of f (in one of the
directions) that does not use edge of a different bundle.
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Works for slightly more general problem.
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Min SAT dichotomy

Theorem (Kim, Kratsch, P., Wahlström, SODA 2023)

FPT/W[1]-hard dichotomy for MIN SAT for boolean domain.

• MIN SAT(Γ): For fixed boolean language Γ, given an
instance and an integer k, can one delete k constraints to
make it satisfiable?

• ℓ-CHAIN SAT was a roadblock.
• constraints of the form (x0 → x1 → . . .→ xℓ);
• shorthand for (x0 → x1) ∨ (x1 → x2) ∨ . . . ∨ (xℓ−1 → xℓ);

• Recall: Γ = {1→ x, x→ 0, (x→ y) ∧ (u→ v)} is
W[1]-hard.

• Γ = {1→ x, x→ 0, (x→ y) ∧ (u→ v) ∧ (¬x∨ ¬u)} ???

• FPT!
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Min SAT dichotomy

Theorem (Kim, Kratsch, P., Wahlström, SODA 2023)

FPT/W[1]-hard dichotomy for MIN SAT for boolean domain.

• Post’s lattice: meet with all old friends.

• Luckily, this has been mostly done by (Bonnet, Egri, Marx,
ESA 2016).

• They provided FPT constant-approximation dichotomy.
• Two “clones” to investigate.

• ID2: constraints definable using 2SAT formulae.
• ISd

10: constraints definable using constants, implications,
and d-ary clauses will all variables negated.

• Main algorithmic part: Each of these contain a new
tractability island.

• Hardness: Marx-Razgon reduction is the hardness
reduction.
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Tractability Island 1

¬x∨ ¬y∨ ¬z

• Constraints defined as an AND of:
• implications (can use constants 1 and 0);
• ORs of negated variables.

such that the implication graph is 2K2-free.
Then, MIN SAT is FPT when parameterized by k and max
constraint arity (but only unweighted here; weighted is
W[1]-hard).
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Tractability Island 2

x∨ y

¬x∨ ¬z

• Constraints defined as an AND of 2-clauses (can use
constants 1 and 0).

• Assumption: for every constraint, the graph of 2-clauses is
2K2-free (after deleting 1 and 0).

Then, MIN UNSAT is FPT when parameterized by k and max
constraint arity (also in the weighted setting).
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MinCSP FPT classification programme

MINCSP
parameterized complexity
classification programme

Goal: Provide FPT vs W[1]-hard dichotomy theorems for
MINCSP parameterized by the number of unsatisfied
constraints for various classes of languages Γ.

Note: requires CSP(Γ) to be P-time.
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Weighted DFAS

• Weighted Directed Feedback Arc Set
(delete at most k arcs of minimum total weight to get a DAG)

• Weighted Directed Feedback Arc Set reduces to Weighted
Skew Multicut with ℓ ∼ k by the standard Iterative
Compression trick.

• Weighted Skew Multicut
(s1, . . . , sℓ, t1, . . . , tℓ ∈ V(G), delete at most k arcs of minimum
total weight to break all si → tj paths for 1 ≤ i ≤ j ≤ ℓ)

• Weighted Skew Multicut unravels to a BUNDLED CUT

WITH PAIRWISE LINKED DELETABLE EDGES instance.
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Weighted DFAS

Weighted Skew Multicut
(s1, . . . , sℓ, t1, . . . , tℓ ∈ V(G), delete at most k arcs of minimum total
weight to break all si → tj paths for 1 ≤ i ≤ j ≤ ℓ)

s t

G1s1
1 t1

1

G2s2
2 t2

2

G3s3
3 t3

3

G4s4
4 t4

4

G5s5
5 t5

5
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Weighted DFAS

Theorem (Kim, Kratsch, P., Wahlström)

(WEIGHTED) DIRECTED FEEDBACK ARC SET reduces to
(WEIGHTED) BCWPLDE.

DIRECTED FEEDBACK ARC SET: delete at most k arcs to get an
acyclic graph.

Theorem (Kim, Masařík, P., Sharma, Wahlström)

(WEIGHTED) DIRECTED SUBSET FEEDBACK ARC SET reduces
to (WEIGHTED) BCWPLDE.

DIRECTED SUBSET FEEDBACK ARC SET: the input digraph G is
equipped with R ⊆ E(G) and the goal is to delete at most k arcs
so that no cycle contains an arc of R.
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Undirected Multicut

• UNDIRECTED MULTICUT: Graph G, terminal pairs
T ⊆ (V(G)

2 ), k ∈ Z; delete at most k arcs so that every
st ∈ T is separated.

• Iterative compression:
• S = {s1, . . . , sk+1} ⊆ V(G) that separates every st ∈ T ;
• solution needs also to separate S.

1

G1s1
1

G2s2
2

G3s3
3

G4s4
4

G5s5
5
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Undirected Multicut

UNDIRECTED MULTICUT: Graph G, terminal pairs T ⊆ (V(G)
2 ),

k ∈ Z; delete at most k arcs so that every st ∈ T is separated.

Theorem (Kim, Masařík, P., Sharma, Wahlström)

WEIGHTED UNDIRECTED MULTICUT can be solved using the
algorithm of Tractability Island 2 as a black-box.
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Beyond boolean domain

• Point Line Algebra:
• Domain: Q.
• Constraints have access to <, ≤, =, ̸= (and are FO

formulae).

• Γ = {<,≤} is equivalent to DIRECTED SUBSET FEEDBACK

ARC SET!
• (Osipov, P., Wahlström, ESA 2024)

Γ = {<, ̸=,=} is FPT.
Γ = {<,≤, ̸=,=} is W[1]-hard.

• Graph formulation: SYMMETRIC MULTICUT. Directed
graph G, unordered pairs of terminals T , integer k. Delete k
edges so that for every st ∈ T , s and t are not in the same
strong component.
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Γ = {<,≤, ̸=,=} is W[1]-hard.

• (Osipov, Wahlström, ESA 2023) Full dichotomy for FO
over {=, ̸=}.

• Most cases beyond look W[1]-hard.
• OPEN: Full dichotomy.
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Beyond boolean domain

• Allen Algebra:
• Domain: intervals {[a, b] | a, b ∈ Q, a < b}.
• Basic constraints: “precedes”, ”starts”, ”ends”, ”meets”,

”during”, ”overlap”, ”equal”.

• (Dabrowski, Jonsson, Ordyniak, Osipov, P., Sharma, IPEC
2023) classification of languages that are just subsets of
basic constraints.

• Highlight 1: there is always an FPT 2-approximation by
using DIRECTED SUBSET FEEDBACK ARC SET separately on
endpoints.

• Highlight 2: {“precedes”, “starts”, “equals”} has an FPT
algorithm via reduction to BCWPLDE.
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Linear equations

• Domain: field / ring K.

• Constraints: linear equations.
• Example: EDGE BIPARTIZATION

• vertices ∼ variables over F2;
• edge uv ∼ u = 1 + v.

• (Dabrowski, Jonsson, Ordyniak, Osipov, Wahlström,
SODA 2023)

• FPT if two variables per equation and K is an Euclidean
domain;

• W[1]-hard for three variables per equation;
• W[1]-hard for some commutative rings (e.g., Z/6Z).
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3-terminal Directed Multicut

s1

t1

s2

t2

s3

t3

MULTICUT: graph G, terminal pairs (si, ti)
ℓ
i=1, integer k.

Goal: delete k edges so that no si → ti path remains.

• [Marx, Razgon, STOC’11]: ℓ arbitrary is W[1]-hard.
• [Chitnis, Hajiaghayi, Marx, SODA’12]: ℓ = 2 is FPT.
• [P. Wahlström, SODA’16]: ℓ = 4 is W[1]-hard.

Theorem (Hatzel, Jaffke, Lima, Masařík, P., Sharma,
Sorge, SODA’23)

ℓ = 3 case is FPT! (Uses twin-width and flow augmentation.)
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Sorge, SODA’23)

ℓ = 3 case is FPT! (Uses twin-width and flow augmentation.)

PARAMETERIZED COMPLEXITY OF MINCSP 31/32



3-terminal Directed Multicut

s1

t1

s2

t2

s3

t3

MULTICUT: graph G, terminal pairs (si, ti)
ℓ
i=1, integer k.

Goal: delete k edges so that no si → ti path remains.

• [Marx, Razgon, STOC’11]: ℓ arbitrary is W[1]-hard.
• [Chitnis, Hajiaghayi, Marx, SODA’12]: ℓ = 2 is FPT.
• [P. Wahlström, SODA’16]: ℓ = 4 is W[1]-hard.

Theorem (Hatzel, Jaffke, Lima, Masařík, P., Sharma,
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Summary

Flow augmentation looks like the missing tool in directed graph
separation problems.

Closed some dichotomies and long-standing open problems.

MINCSP parameterized complexity classification programme.

Open problems:
• Full dichotomy for Point Line Algebra?
• Good methodology for closing dichotomies?

Thanks!
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