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Why should we care about CSPs for children?

▶ only one? and symmetric?

finite-domain CSP with one
binary symmetric relation



Even if meant for kids, still fun for adults
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can G be properly colored with k colors?
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Children like coloring…

k-Coloring
Input:
Question:

a graph G with n vertices
can G be properly colored with k colors?

Yes

k = 5



Some classics

Theorem (Appel, Haken). Every planar graph admits a proper
4-coloring.

Theorem (Szekeres-Wilf). If every subgraph of G has a vertex of
degree ⩽ k− 1, then G admits a proper k-coloring.



Some classics

Theorem (Appel, Haken). Every planar graph admits a proper
4-coloring.

Theorem (Karp). For every k ⩾ 3, the k-Coloring problem is
NP-complete (and polynomial-time-solvable for k ⩽ 2).

Theorem (Szekeres-Wilf). If every subgraph of G has a vertex of
degree ⩽ k− 1, then G admits a proper k-coloring.

Theorem (Björklund, Husfeldt, Koivisto). For every k, the
k-Coloring problem can be solved in time 2n · poly(n).

not depending on k

▶ brute force: kn · poly(n)
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Homomorphism from G to H (also called an H-coloring) ≡
edge-preserving mapping from V(G) to V(H)
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Graph coloring for grown-ups
Homomorphism from G to H (also called an H-coloring) ≡
edge-preserving mapping from V(G) to V(H)

▶ Kk-Coloring ≡ k-Coloring

G H→

H-Coloring
Input:
Question:

a graph G with n vertices
does G admit an H-coloring?
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Classics rediscovered
Theorem (Szekeres-Wilf). If every subgraph of G has a vertex of
degree ⩽ k− 1, then G admits a proper k-coloring.

Theorem (Chen, Raspaud). If every subgraph of G has average
degree < 2.5 and G has no triangles, then G admits a
homomorphism to the Petersen graph.

▶ first case of a very nice conjecture!



Classics rediscovered, ctd.
Theorem (Appel, Haken). Every planar graph admits a proper
4-coloring.
Theorem (Grötzsch). Every triangle-free planar graph admits a
proper 3-coloring.



Classics rediscovered, ctd.
Theorem (Appel, Haken). Every planar graph admits a proper
4-coloring.

Theorem (Naserasr, Migussie, Škrekovski). Every triangle-free
planar graph admits a homomorphism to the Clebsch graph.

it’s planar and triangle-free

Theorem (Grötzsch). Every triangle-free planar graph admits a
proper 3-coloring.



Complexity of the problem
Theorem (Karp).
For every k ⩾ 3, the
k-Coloring problem is
NP-complete.

Theorem (Hell, Nešetřil).
For every loopless, nonbipartite
H, the H-Coloring problem is
NP-complete.

▶ otherwise is polynomial-time-solvable (and easy)



Complexity of the problem
Theorem (Karp).
For every k ⩾ 3, the
k-Coloring problem is
NP-complete.

Theorem (Hell, Nešetřil).
For every loopless, nonbipartite
H, the H-Coloring problem is
NP-complete.

▶ otherwise is polynomial-time-solvable (and easy)

Theorem (Björklund,
Husfeldt, Koivisto).
For every k, the k-Coloring
problem can be solved in
time 2n · poly(n).

Theorem (Cygan, Fomin,
Golovnev, Kulikov, Mihajlin,
Pachocki, Socała).
There is no 2o(n log |H|)

algorithm, assuming the ETH.

▶ no cn-algorithm for universal constant c



Coloring bounded-treewidth graphs
▶ From now on assume that G has n vertices and is given with

a tree decomposition of width tw

▶ For every k, k-Coloring can be decided in time ktw · poly(n)
▶ same for list coloring, for counting colorings…



Coloring bounded-treewidth graphs
▶ From now on assume that G has n vertices and is given with

a tree decomposition of width tw

▶ For every k, k-Coloring can be decided in time ktw · poly(n)
▶ same for list coloring, for counting colorings…

Theorem (Lokshtanov, Marx, Saubrabh).
For any k ⩾ 3, k-Coloring cannot be solved in time
(k− ε)tw · poly(n), assuming the SETH.

▶ … and thus also list coloring, counting colorings etc.



Homomorphisms and bounded treewidth

Problem.
For every graph H, find k = k(H), such that H-coloring of G
▶ can be solved in time ktw,
▶ cannot be solved in time (k− ε)tw, unless the SETH fails.

▶ k ⩽ |H|
▶ if H is complete, then k = |H|

▶ we consider connected non-bipartite graphs H with no loops
▶ we can also assume that H is a core (has no homomorphism

to its proper subgraph)

let’s not write ·poly(n)



Warm-up: C5

▶ the smallest non-complete core
▶ can you beat 5tw?
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▶ start with a graph G
▶ obtain G∗ by subdividing each edge twice
▶ G has a 5-coloring ⇔ G∗ has a C5-coloring
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Warm-up: C5

▶ the smallest non-complete core
▶ can you beat 5tw?

1

2

3
4

5
1 2 1 2
1 5 4 3
1 2 3 4
1 5 1 5
1 1

▶ start with a graph G
▶ obtain G∗ by subdividing each edge twice
▶ G has a 5-coloring ⇔ G∗ has a C5-coloring
▶ tw(G∗) = tw(G)

▶ finding C5-coloring of G∗ in time (5− ε)tw(G
∗) →

finding 5-coloring of G in time (5− ε)tw(G) → the SETH fails



Algorithmic idea: direct products
▶ for graphs H1,H2, we define their direct product H1 ×H2 as

follows:
▶ V(H1 ×H2) = V(H1)× V(H2)

▶ (u1,u2)(v1, v2) ∈ E(H1 ×H2) iff u1v1 ∈ E(H1) and
u2v2 ∈ E(H2)
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▶ the generalization to H1 ×H2 × . . .×Hm is natural
(× is associative and commutative)



Algorithmic idea: direct products
▶ for graphs H1,H2, we define their direct product H1 ×H2 as

follows:
▶ V(H1 ×H2) = V(H1)× V(H2)

▶ (u1,u2)(v1, v2) ∈ E(H1 ×H2) iff u1v1 ∈ E(H1) and
u2v2 ∈ E(H2)

▶ G → H1 ×H2 × . . .×Hm iff G → Hi for every i ∈ [m]

Corollary.
If H = H1 ×H2 × . . .×Hk, where |H1| ⩾ |H2| ⩾ . . . ⩾ |Hm|,
then H-coloring of G can be solved in time |H1|

tw.

▶ the generalization to H1 ×H2 × . . .×Hm is natural
(× is associative and commutative)



Special case: projective graphs
▶ for any k we have Hk → H, e.g., projections on each

coordinate
▶ H is projective if for all k ⩾ 2 projections are the only

homomorphisms from Hk to H (up to automorphisms)
▶ there are non-projective graphs, e.g., all direct products



Special case: projective graphs
▶ for any k we have Hk → H, e.g., projections on each

coordinate
▶ H is projective if for all k ⩾ 2 projections are the only

homomorphisms from Hk to H (up to automorphisms)
▶ there are non-projective graphs, e.g., all direct products

Lemma.
Let H be a projective core. Then there exists an edge gadget, i.e.,
a graph F with two special vertices x,y, such that:
▶ for any h : F → H we have h(x) ̸= h(y),
▶ for any distinct u, v ∈ V(H) there is h : F → H, such that

h(x) = u and h(y) = v.



Construction of the edge gadget
▶ V(H) = {v1, v2, . . . , vk}

▶ F = Hk(k−1)

y = (x2, x3, . . . , xk, x1, x3, . . . , xk, . . . x1, x2, . . . , xk−1)

x = (

k−1︷ ︸︸ ︷
x1, x1, . . . , x1,

k−1︷ ︸︸ ︷
x2, x2, . . . , x2, . . .

k−1︷ ︸︸ ︷
xk, xk, . . . , xk)



Construction of the edge gadget
▶ V(H) = {v1, v2, . . . , vk}

▶ F = Hk(k−1)

y = (x2, x3, . . . , xk, x1, x3, . . . , xk, . . . x1, x2, . . . , xk−1)

x = (

k−1︷ ︸︸ ︷
x1, x1, . . . , x1,

k−1︷ ︸︸ ︷
x2, x2, . . . , x2, . . .

k−1︷ ︸︸ ︷
xk, xk, . . . , xk)

▶ H is projective: all homomorphisms from F to H are
projections → there is no homomorphism that maps x and y

on the same vertex



Construction of the edge gadget
▶ V(H) = {v1, v2, . . . , vk}

▶ F = Hk(k−1)

y = (x2, x3, . . . , xk, x1, x3, . . . , xk, . . . x1, x2, . . . , xk−1)

x = (

k−1︷ ︸︸ ︷
x1, x1, . . . , x1,

k−1︷ ︸︸ ︷
x2, x2, . . . , x2, . . .

k−1︷ ︸︸ ︷
xk, xk, . . . , xk)

▶ H is projective: all homomorphisms from F to H are
projections → there is no homomorphism that maps x and y

on the same vertex

▶ for every distinct u, v there is a coordinate ℓ, such that
x[ℓ] = u and y[ℓ] = v → the projection on the ℓ-th
corrdinate is a homomorphism that maps x to u and y to v



Projective graphs: lower bound
Lemma.
Let H be a projective core. Then there exists an edge gadget, i.e.,
a graph F with two special vertices x,y, such that:
▶ for any h : F → H we have h(x) ̸= h(y),
▶ for any distinct u, v ∈ V(H) there is h : F → H, such that

h(x) = u and h(y) = v.
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▶ construct G∗ by replacing every edge with a copy of F
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Projective graphs: lower bound
Lemma.
Let H be a projective core. Then there exists an edge gadget, i.e.,
a graph F with two special vertices x,y, such that:
▶ for any h : F → H we have h(x) ̸= h(y),
▶ for any distinct u, v ∈ V(H) there is h : F → H, such that

h(x) = u and h(y) = v.

▶ let G be an instance of k-coloring with k := |H|
▶ construct G∗ by replacing every edge with a copy of F
▶ G is |H|-colorable iff G∗ is H-colorable
▶ tw(G∗) ⩽ tw(G) + |F| = tw(G) + O(1)

▶ finding H-coloring of G∗ in time (k− ε)tw(G
∗) →

finding k-coloring of G in time (k− ε)tw(G) → the SETH
fails



Projective vs. non-projective graphs
Theorem (Okrasa, Rz.)
Let H be a projective core. Then H-coloring of G cannot be
solved in time (|H|− ε)tw, unless the SETH fails.
▶ tight: the straightforward algorithm works in time |H|tw(G)
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Projective vs. non-projective graphs
Theorem (Okrasa, Rz.)
Let H be a projective core. Then H-coloring of G cannot be
solved in time (|H|− ε)tw, unless the SETH fails.

Theorem (Hell, Nešetřil + Łuczak, Nešetřil).
Almost all graphs are projective cores.

▶ can we do the same for non-projective graphs?

Proposition.
There exists an edge gadget for H if and only if H is projective.

▶ tight: the straightforward algorithm works in time |H|tw(G)
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Overview on the current situation

all cores

direct products directly
indecomposable

improved
upper bound

Conjecture 1 (Larose, Tardif, 2001).
A connected non-bipartite core is indecomposable iff it is
projective.

tight bound
(assuming Conj. 1)



Direct products of graphs – a closer look
▶ consider H = H1 ×H2 × . . .×Hm,

where |H1| ⩾ . . . ⩾ |Hm| and each Hi is indecomposable

▶ recall that we can solve H-coloring of G in time |H1|
tw(G)

▶ Conjecture 1 implies that each Hi is projective
▶ since H is a core, each Hi is a core
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Direct products of graphs – a closer look
▶ consider H = H1 ×H2 × . . .×Hm,

where |H1| ⩾ . . . ⩾ |Hm| and each Hi is indecomposable

▶ Larose (2002) studied a subclass of projective graphs, called
strongly projective

▶ recall that we can solve H-coloring of G in time |H1|
tw(G)

Theorem (Okrasa, Rz.).
If H1 is strongly projective, then H-coloring of G cannot be
solved in time (|H1|− ε)tw(G), unless the SETH fails.

▶ Conjecture 1 implies that each Hi is projective

Conjecture 2 (Larose, 2002).
Every projective core is strongly projective.

▶ since H is a core, each Hi is a core



Final overview

all cores

direct products directly
indecomposable

improved
upper bound tight bound

(assuming Conj. 1)



Final overview

all cores

direct products directly
indecomposable

tight bound
(assuming Conj. 1)

tight bound
(assuming Conj. 1 & 2)

Theorem (Okrasa, Rz.).
Assume Conjectures 1 and 2. Let H = H1 × . . .×Hm be a core,
where |H1| ⩾ . . . ⩾ |Hm|. Then H-coloring of G
a) can be solved in time |H1|

tw(G),
b) cannot be solved in time (|H1|− ε)tw(G), under the SETH.



List homomorphisms
▶ each vertex v of G has a list L(v) of vertices of H
▶ v can only be mapped to a vertex from L(v)
▶ it’s a harder problem, in particular has more NP-hard cases



List homomorphisms
▶ each vertex v of G has a list L(v) of vertices of H
▶ v can only be mapped to a vertex from L(v)
▶ it’s a harder problem, in particular has more NP-hard cases

Problem.
For every graph H, find k = k(H), such that list H-coloring of G
▶ can be solved in time ktw,
▶ cannot be solved in time (k− ε)tw, unless the SETH fails.

▶ we still have k ⩽ |H| and k = |H| if H is complete



Algorithmic idea: incomparable vertices
▶ actually, we have

k ⩽ maxv∈V(G) |L(v)|.

this is not
a property
of H



Algorithmic idea: incomparable vertices
▶ actually, we have

▶ u, v ∈ V(H) are comparable if N(u) ⊆ N(v)

▶ if both appear in one list, we can safely remove u
▶ no list contains two comparable vertices

i(H) = size of the largest set of pairwise incomparable vertices
▶ k ⩽ i(H)

u v

k ⩽ maxv∈V(G) |L(v)|.

this is not
a property
of H
… or is it?



One more algorithmic idea: decomposition

▶ N separates D and R
▶ N is a reflexive clique
▶ all edges between D and N are in H

D
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▶ we found three types of decompositions of H



One more algorithmic idea: decomposition

▶ N separates D and R
▶ N is a reflexive clique
▶ all edges between D and N are in H

▶ for u ∈ D and v ∈ N, always N[u] ⊆ N[v]
▶ vertices from D and N never appear in the same list

▶ if x ∈ V(G) is mapped to D and y ∈ V(G) is mapped to R,
then every x-y path contains a vertex mapped to N

D

N

R

▶ we found three types of decompositions of H



Decomposition lemma

X = {v : L(v) ∩N ̸= ∅}, C = set of components of G− X

X N

R

D

N
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Decomposition lemma

X = {v : L(v) ∩N ̸= ∅}, C = set of components of G− X

▶ every C ∈ C must be entirely mapped to D or R
▶ precompute list H[D]-coloring of each C ∈ C
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Decomposition lemma

X = {v : L(v) ∩N ̸= ∅}, C = set of components of G− X

▶ every C ∈ C must be entirely mapped to D or R
▶ precompute list H[D]-coloring of each C ∈ C

d

N

R

▶ collapse D to a single reflexive vertex d, obtaining H ′

▶ update lists: if v is in C ∈ C, which can be mapped to D,
then add d to L(v)

X N

R



Decomposition lemma, continued
▶ we reduced an instance of list H-Coloring to nO(1) instances

of list H[D]-Coloring and list H ′-Coloring

Decomposition lemma.
If we can solve list H[D]-Coloring and list H ′-Coloring in time
ctw, then we can solve list H-Coloring in time ctw.



Decomposition lemma, continued
▶ we reduced an instance of list H-Coloring to nO(1) instances

of list H[D]-Coloring and list H ′-Coloring

i∗(H) ≈ maximum i(H ′) over all undecomposable induced
subgraphs of H

Decomposition lemma.
If we can solve list H[D]-Coloring and list H ′-Coloring in time
ctw, then we can solve list H-Coloring in time ctw.



Decomposition lemma, continued
▶ we reduced an instance of list H-Coloring to nO(1) instances

of list H[D]-Coloring and list H ′-Coloring

i∗(H) ≈ maximum i(H ′) over all undecomposable induced
subgraphs of H

Theorem (Egri, Marx, Rz. + Okrasa, Piecyk, Rz.).
For every graph “hard” H, i∗(H) is the correct bound:
a) List H-Coloring can be solved in time (i∗(H))tw,
b) List H-Coloring cannot be solved in time (i∗(H)− ε)tw (SETH).

Decomposition lemma.
If we can solve list H[D]-Coloring and list H ′-Coloring in time
ctw, then we can solve list H-Coloring in time ctw.
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≡counting colorings



Counting list homomorpshisms
▶ what is the number of list H-colorings?
▶ even more hard cases than for the decision variant

▶ incomparable vertices do not work this time
▶ but we can assume each list is irredundant – has no vertices

with exactly the same neighborhood → |L(v)| ⩽ irr(H)
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Counting list homomorpshisms
▶ what is the number of list H-colorings?
▶ even more hard cases than for the decision variant

Theorem (Focke, Marx, Rz.).
For every graph “hard” H, irr(H) is the correct bound:
a) #List H-Coloring can be solved in time (irr(H))tw,
b) #List H-Coloring cannot be solved in time (irr(H) − ε)tw

(#SETH).

▶ incomparable vertices do not work this time
▶ but we can assume each list is irredundant – has no vertices

with exactly the same neighborhood → |L(v)| ⩽ irr(H)

counting independent
sets in bipartite graphs

≡counting colorings
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▶ similar results are known for cliquewidth

[Ganian, Hamm, Korchemna, Okrasa, Simonov]

Theorem (Jansen, Nederlof).
(List) k-Coloring can be solved in (randomized) time 2ctw.

▶ cutwidth – minimize the number of edges crossed by a cut,
over all vertex orderings



What’s next?
▶ similar results are known for cliquewidth

[Ganian, Hamm, Korchemna, Okrasa, Simonov]

Theorem (Jansen, Nederlof).
(List) k-Coloring can be solved in (randomized) time 2ctw.

▶ cutwidth – minimize the number of edges crossed by a cut,
over all vertex orderings

▶ complexity of CSP parameterized by the structure of the
Gaifman graph



Even if meant for kids, still fun for adults


