CSPs for children: Fine-grained complexity of graph homomorphism problems

Paweł Rzążewski

Warsaw University of Technology & University of Warsaw

Graph homomorphism: adult's view

► Graph homomorphism ≡ finite-domain CSP with one binary symmetric relation

Graph homomorphism: adult's view

► Graph homomorphism ≡ finite-domain CSP with one binary symmetric relation

only one? and symmetric?

Why should we care about CSPs for children?

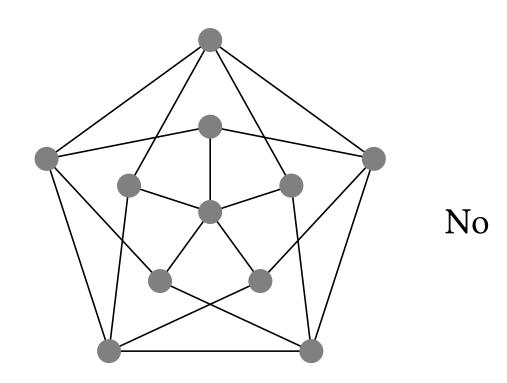
Even if meant for kids, still fun for adults

Children like coloring...

k-Coloring

Input: a graph G with n vertices

Question: can G be properly colored with k colors?

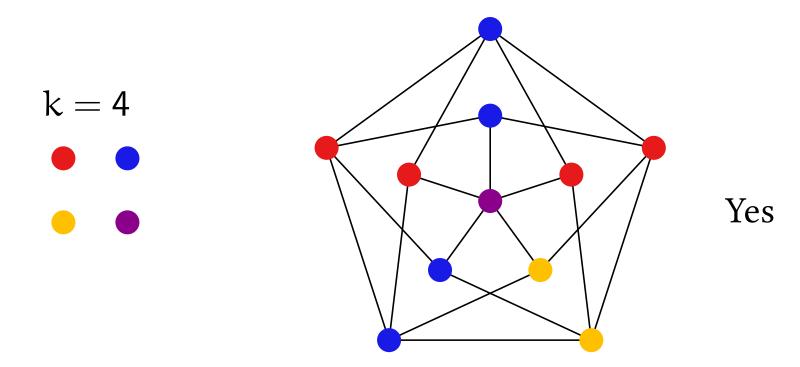


Children like coloring...

k-Coloring

Input: a graph G with n vertices

Question: can G be properly colored with k colors?

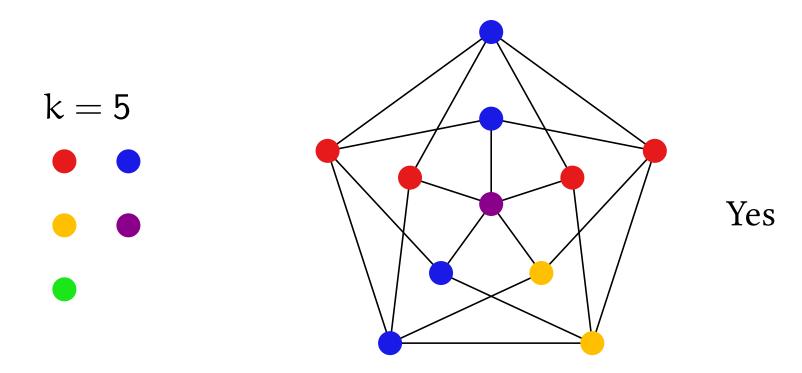


Children like coloring...

k-Coloring

Input: a graph G with n vertices

Question: can G be properly colored with k colors?



Some classics

Theorem (Szekeres-Wilf). If every subgraph of G has a vertex of degree $\leq k-1$, then G admits a proper k-coloring.

Theorem (Appel, Haken). Every planar graph admits a proper 4-coloring.

Some classics

Theorem (Szekeres-Wilf). If every subgraph of G has a vertex of degree $\leq k-1$, then G admits a proper k-coloring.

Theorem (Appel, Haken). Every planar graph admits a proper 4-coloring.

Theorem (Karp). For every $k \ge 3$, the k-Coloring problem is NP-complete (and polynomial-time-solvable for $k \le 2$).

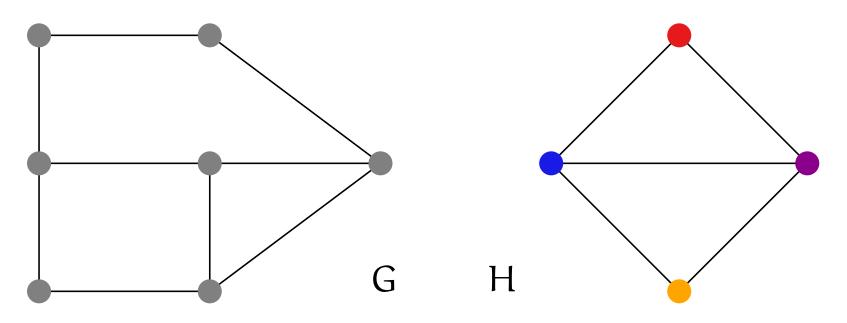
• brute force: $k^n \cdot poly(n)$

Theorem (Björklund, Husfeldt, Koivisto). For every k, the k-Coloring problem can be solved in time $2^n \cdot \text{poly}(n)$.

not depending on k

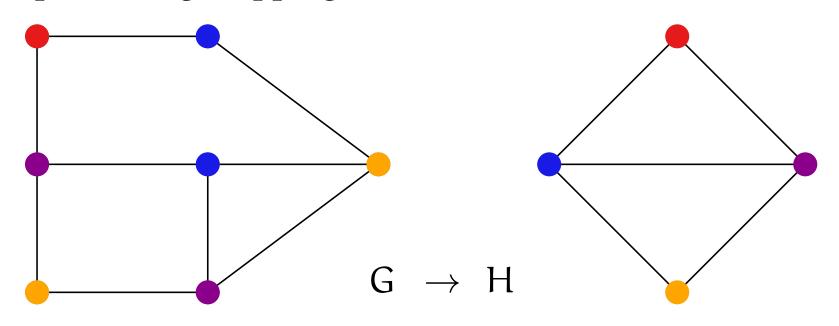
Graph coloring for grown-ups

Homomorphism from G to H (also called an H-coloring) \equiv edge-preserving mapping from V(G) to V(H)



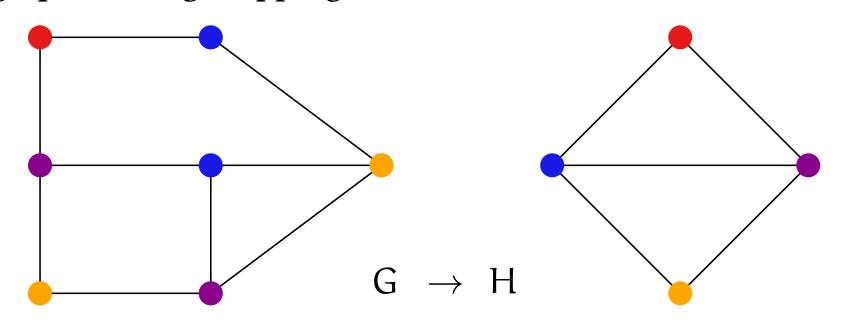
Graph coloring for grown-ups

Homomorphism from G to H (also called an H-coloring) \equiv edge-preserving mapping from V(G) to V(H)



Graph coloring for grown-ups

Homomorphism from G to H (also called an H-coloring) \equiv edge-preserving mapping from V(G) to V(H)



H-Coloring

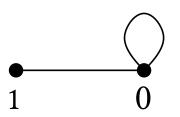
Input: a graph G with n vertices

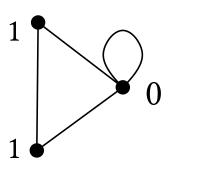
Question: does G admit an H-coloring?

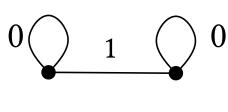
 $ightharpoonup K_k$ -Coloring \equiv k-Coloring

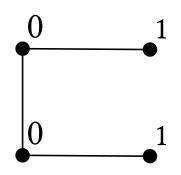
Not only colorings

maximize total weight



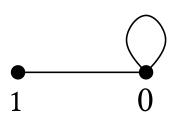


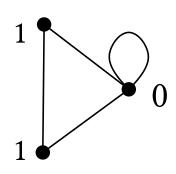


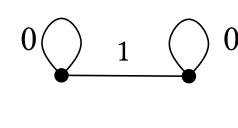


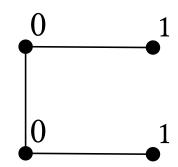
Not only colorings

maximize total weight









Independent Set

Odd Cycle Transversal

Max Cut

Independent Set in bipartite graphs

Classics rediscovered

Theorem (Szekeres-Wilf). If every subgraph of G has a vertex of degree $\leq k-1$, then G admits a proper k-coloring.

Theorem (Chen, Raspaud). If every subgraph of G has average degree < 2.5 and G has no triangles, then G admits a homomorphism to the Petersen graph.

first case of a very nice conjecture!

Classics rediscovered, ctd.

Theorem (Appel, Haken). Every planar graph admits a proper 4-coloring.

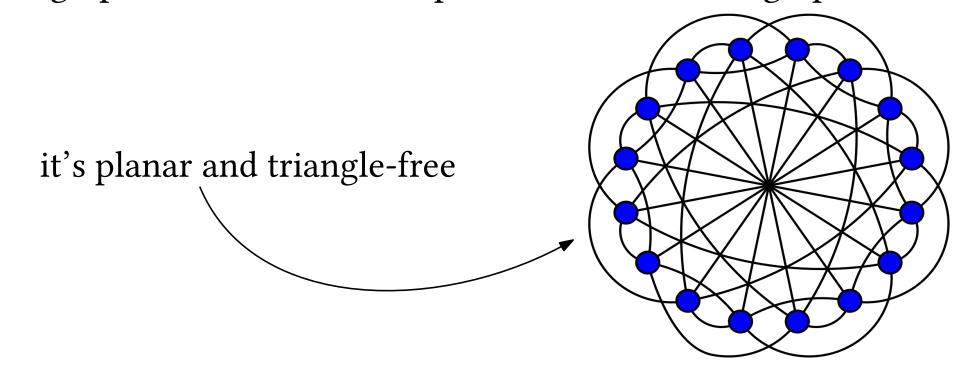
Theorem (Grötzsch). Every triangle-free planar graph admits a proper 3-coloring.

Classics rediscovered, ctd.

Theorem (Appel, Haken). Every planar graph admits a proper 4-coloring.

Theorem (Grötzsch). Every triangle-free planar graph admits a proper 3-coloring.

Theorem (Naserasr, Migussie, Škrekovski). Every triangle-free planar graph admits a homomorphism to the Clebsch graph.



Complexity of the problem

Theorem (Karp).

For every $k \ge 3$, the k-Coloring problem is NP-complete.

Theorem (Hell, Nešetřil).

For every loopless, nonbipartite H, the H-Coloring problem is

NP-complete.

otherwise is polynomial-time-solvable (and easy)

Complexity of the problem

Theorem (Karp).

For every $k \ge 3$, the k-Coloring problem is NP-complete.

Theorem (Hell, Nešetřil).

For every loopless, nonbipartite H, the H-Coloring problem is NP-complete.

otherwise is polynomial-time-solvable (and easy)

Theorem (Björklund,

Husfeldt, Koivisto).

For every k, the k-Coloring problem can be solved in time $2^n \cdot poly(n)$.

Theorem (Cygan, Fomin,

Golovnev, Kulikov, Mihajlin,

Pachocki, Socała).

There is no $2^{o(n \log |H|)}$

algorithm, assuming the ETH.

► no cⁿ-algorithm for universal constant c

Coloring bounded-treewidth graphs

- From now on assume that G has n vertices and is given with a tree decomposition of width tw
- ▶ For every k, k-Coloring can be decided in time k^{tw} · poly(n)
- same for list coloring, for counting colorings...

Coloring bounded-treewidth graphs

- ► From now on assume that G has n vertices and is given with a tree decomposition of width tw
- ▶ For every k, k-Coloring can be decided in time k^{tw} · poly(n)
- same for list coloring, for counting colorings...

Theorem (Lokshtanov, Marx, Saubrabh).

For any $k \ge 3$, k-Coloring cannot be solved in time $(k - \varepsilon)^{tw} \cdot poly(n)$, assuming the SETH.

... and thus also list coloring, counting colorings etc.

Homomorphisms and bounded treewidth

- we consider connected non-bipartite graphs H with no loops
- we can also assume that H is a *core* (has no homomorphism to its proper subgraph)

Problem.

For every graph H, find k = k(H), such that H-coloring of G

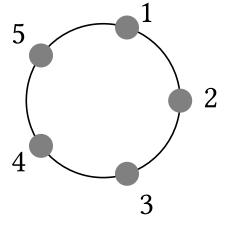
- can be solved in time k^{tw},
- cannot be solved in time $(k \varepsilon)^{tw}$, unless the SETH fails.

k ≤ |H|

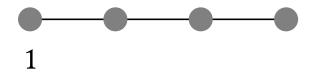
• if H is complete, then k = |H|

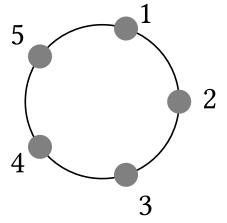
let's not write \cdot poly(n)

- the smallest non-complete core
- ► can you beat 5^{tw}?

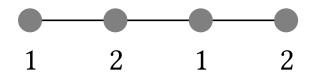


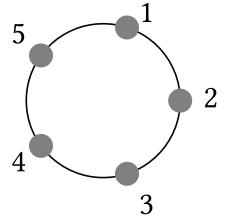
- the smallest non-complete core
- ► can you beat 5^{tw}?





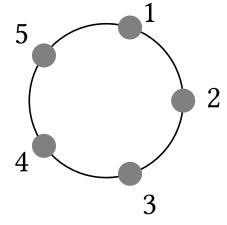
- the smallest non-complete core
- ► can you beat 5^{tw}?





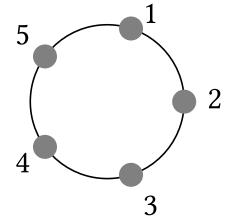
- the smallest non-complete core
- ► can you beat 5^{tw}?

<u> </u>	_		_
1	2	1	2
1	5	4	3



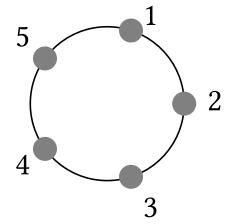
- the smallest non-complete core
- ► can you beat 5^{tw}?

<u> </u>	_	_	-
1	2	1	2
1	5	4	3
1	2	3	4



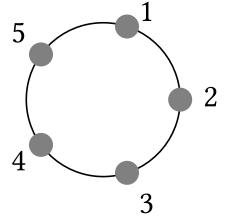
- the smallest non-complete core
- ► can you beat 5^{tw}?

	_	_	-
1	2	1	2
1	5	4	3
1	2	3	4
1	5	1	5



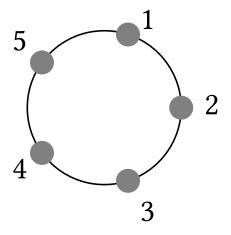
- the smallest non-complete core
- ► can you beat 5^{tw}?

<u> </u>	_		-
1	2	1	2
1	5	4	3
1	2	3	4
1	5	1	5
1			1



- the smallest non-complete core
- can you beat 5^{tw}?

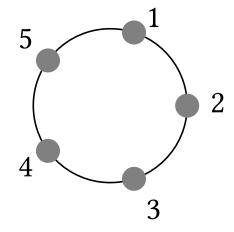
<u> </u>	_	_	_
1	2	1	2
1	5	4	3
1	2	3	4
1	5	1	5
1			1



- start with a graph G
- obtain G* by subdividing each edge twice
- ▶ G has a 5-coloring \Leftrightarrow G* has a C₅-coloring

- the smallest non-complete core
- can you beat 5^{tw}?

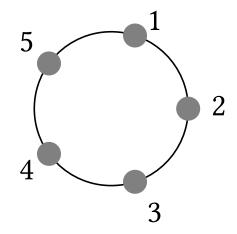
<u> </u>	_	_	-
1	2	1	2
1	5	4	3
1	2	3	4
1	5	1	5
1			1



- start with a graph G
- obtain G* by subdividing each edge twice
- ▶ G has a 5-coloring \Leftrightarrow G* has a C₅-coloring
- $\blacktriangleright \mathsf{tw}(\mathsf{G}^*) = \mathsf{tw}(\mathsf{G})$

- the smallest non-complete core
- can you beat 5^{tw}?

<u> </u>	_		_
1	2	1	2
1	5	4	3
1	2	3	4
1	5	1	5
1			1



- start with a graph G
- obtain G* by subdividing each edge twice
- ▶ G has a 5-coloring \Leftrightarrow G* has a C₅-coloring
- $\blacktriangleright \mathsf{tw}(\mathsf{G}^*) = \mathsf{tw}(\mathsf{G})$
- ▶ finding C₅-coloring of G* in time $(5 \varepsilon)^{\mathsf{tw}(G^*)} \to$ finding 5-coloring of G in time $(5 \varepsilon)^{\mathsf{tw}(G)} \to \mathsf{the}$ SETH fails

Algorithmic idea: direct products

- for graphs H_1 , H_2 , we define their direct product $H_1 \times H_2$ as follows:
 - $V(H_1 \times H_2) = V(H_1) \times V(H_2)$
 - $(u_1, u_2)(v_1, v_2) \in E(H_1 \times H_2)$ iff $u_1v_1 \in E(H_1)$ and $u_2v_2 \in E(H_2)$

Algorithmic idea: direct products

- for graphs H_1 , H_2 , we define their direct product $H_1 \times H_2$ as follows:
 - $V(H_1 \times H_2) = V(H_1) \times V(H_2)$
 - $(u_1, u_2)(v_1, v_2) \in E(H_1 \times H_2)$ iff $u_1v_1 \in E(H_1)$ and $u_2v_2 \in E(H_2)$
- the generalization to $H_1 \times H_2 \times ... \times H_m$ is natural (× is associative and commutative)

Algorithmic idea: direct products

- for graphs H_1 , H_2 , we define their direct product $H_1 \times H_2$ as follows:
 - $V(H_1 \times H_2) = V(H_1) \times V(H_2)$
 - $(u_1, u_2)(v_1, v_2) \in E(H_1 \times H_2)$ iff $u_1v_1 \in E(H_1)$ and $u_2v_2 \in E(H_2)$
- the generalization to $H_1 \times H_2 \times ... \times H_m$ is natural (× is associative and commutative)
- ▶ $G \to H_1 \times H_2 \times ... \times H_m$ iff $G \to H_i$ for every $i \in [m]$ Corollary.

If $H = H_1 \times H_2 \times ... \times H_k$, where $|H_1| \ge |H_2| \ge ... \ge |H_m|$, then H-coloring of G can be solved in time $|H_1|^{tw}$.

Special case: projective graphs

- for any k we have $H^k \to H$, e.g., projections on each coordinate
- ► H is projective if for all $k \ge 2$ projections are the only homomorphisms from H^k to H (up to automorphisms)
- there are non-projective graphs, e.g., all direct products

Special case: projective graphs

- for any k we have $H^k \to H$, e.g., projections on each coordinate
- ► H is projective if for all $k \ge 2$ projections are the only homomorphisms from H^k to H (up to automorphisms)
- there are non-projective graphs, e.g., all direct products

Lemma.

- for any h: $F \to H$ we have $h(x) \neq h(y)$,
- ▶ for any distinct $u, v \in V(H)$ there is $h: F \to H$, such that h(x) = u and h(y) = v.

Construction of the edge gadget

▶
$$V(H) = \{v_1, v_2, ..., v_k\}$$

•
$$F = H^{k(k-1)}$$

$$x = (\overbrace{x_1, x_1, \dots, x_1}^{k-1}, \overbrace{x_2, x_2, \dots, x_2}^{k-1}, \dots \overbrace{x_k, x_k, \dots, x_k}^{k-1})$$

$$y = (x_2, x_3, \dots, x_k, x_1, x_3, \dots, x_k, \dots x_1, x_2, \dots, x_{k-1})$$

Construction of the edge gadget

- ▶ $V(H) = \{v_1, v_2, ..., v_k\}$
- $F = H^{k(k-1)}$

$$x = (\overbrace{x_1, x_1, \dots, x_1}^{k-1}, \overbrace{x_2, x_2, \dots, x_2}^{k-1}, \dots \overbrace{x_k, x_k, \dots, x_k}^{k-1})$$

$$y = (x_2, x_3, \dots, x_k, x_1, x_3, \dots, x_k, \dots x_1, x_2, \dots, x_{k-1})$$

► H is projective: all homomorphisms from F to H are projections → there is no homomorphism that maps x and y on the same vertex

Construction of the edge gadget

- ▶ $V(H) = \{v_1, v_2, ..., v_k\}$
- $F = H^{k(k-1)}$

$$x = (x_1, x_1, \dots, x_1, x_1, x_2, \dots, x_2, \dots, x_2, \dots, x_k, x_k, \dots, x_k)$$

$$y = (x_2, x_3, \dots, x_k, x_1, x_3, \dots, x_k, \dots, x_k, \dots, x_{k-1})$$

- ► H is projective: all homomorphisms from F to H are projections → there is no homomorphism that maps x and y on the same vertex
- for every distinct u, v there is a coordinate ℓ , such that $x[\ell] = u$ and $y[\ell] = v \rightarrow$ the projection on the ℓ -th corrdinate is a homomorphism that maps x to u and y to v

Lemma.

- ▶ for any h: $F \rightarrow H$ we have $h(x) \neq h(y)$,
- ▶ for any distinct $u, v \in V(H)$ there is $h: F \to H$, such that h(x) = u and h(y) = v.

Lemma.

- ▶ for any h: $F \rightarrow H$ we have $h(x) \neq h(y)$,
- ▶ for any distinct $u, v \in V(H)$ there is $h: F \to H$, such that h(x) = u and h(y) = v.
- ▶ let G be an instance of k-coloring with k := |H|
- construct G* by replacing every edge with a copy of F
- ► G is |H|-colorable iff G* is H-colorable

Lemma.

- ▶ for any h: $F \rightarrow H$ we have $h(x) \neq h(y)$,
- ▶ for any distinct $u, v \in V(H)$ there is $h: F \to H$, such that h(x) = u and h(y) = v.
- ▶ let G be an instance of k-coloring with k := |H|
- construct G* by replacing every edge with a copy of F
- ► G is |H|-colorable iff G* is H-colorable
- $\blacktriangleright \mathsf{tw}(\mathsf{G}^*) \leqslant \mathsf{tw}(\mathsf{G}) + |\mathsf{F}| = \mathsf{tw}(\mathsf{G}) + \mathcal{O}(1)$

Lemma.

- ▶ for any h: $F \rightarrow H$ we have $h(x) \neq h(y)$,
- ▶ for any distinct $u, v \in V(H)$ there is $h: F \to H$, such that h(x) = u and h(y) = v.
- ▶ let G be an instance of k-coloring with k := |H|
- construct G* by replacing every edge with a copy of F
- ► G is |H|-colorable iff G* is H-colorable
- $\blacktriangleright \mathsf{tw}(\mathsf{G}^*) \leqslant \mathsf{tw}(\mathsf{G}) + |\mathsf{F}| = \mathsf{tw}(\mathsf{G}) + \mathcal{O}(1)$
- ▶ finding H-coloring of G* in time $(k \epsilon)^{\mathsf{tw}(G^*)} \to$ finding k-coloring of G in time $(k \epsilon)^{\mathsf{tw}(G)} \to \mathsf{the}$ SETH fails

Theorem (Okrasa, Rz.)

Let H be a projective core. Then H-coloring of G cannot be solved in time $(|H| - \varepsilon)^{tw}$, unless the SETH fails.

▶ tight: the straightforward algorithm works in time |H|^{tw(G)}

Theorem (Okrasa, Rz.)

Let H be a projective core. Then H-coloring of G cannot be solved in time $(|H| - \varepsilon)^{tw}$, unless the SETH fails.

▶ tight: the straightforward algorithm works in time |H|^{tw(G)}

Theorem (Hell, Nešetřil + Łuczak, Nešetřil).

Almost all graphs are projective cores.

Theorem (Okrasa, Rz.)

Let H be a projective core. Then H-coloring of G cannot be solved in time $(|H| - \varepsilon)^{tw}$, unless the SETH fails.

▶ tight: the straightforward algorithm works in time |H|^{tw(G)}

Theorem (Hell, Nešetřil + Łuczak, Nešetřil).

Almost all graphs are projective cores.

can we do the same for non-projective graphs?

Theorem (Okrasa, Rz.)

Let H be a projective core. Then H-coloring of G cannot be solved in time $(|H| - \varepsilon)^{tw}$, unless the SETH fails.

▶ tight: the straightforward algorithm works in time |H|^{tw(G)}

Theorem (Hell, Nešetřil + Łuczak, Nešetřil).

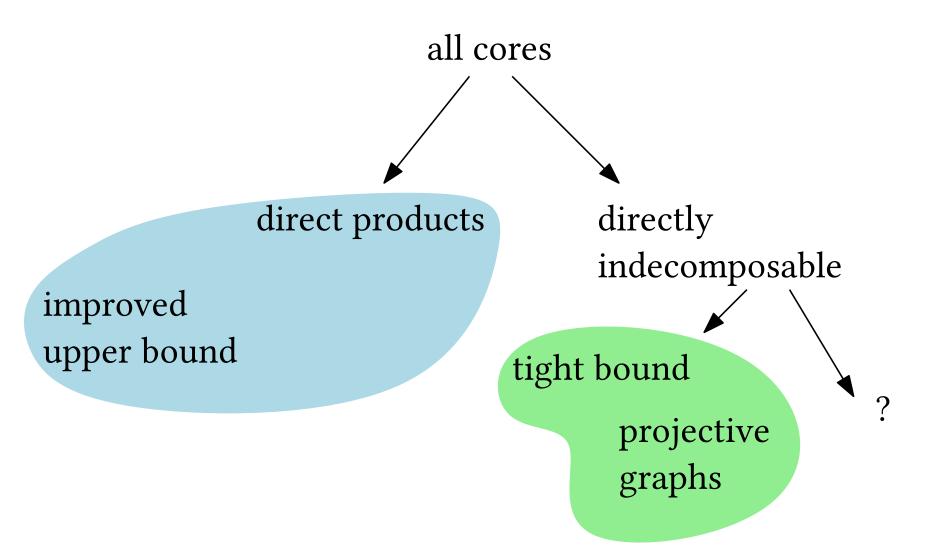
Almost all graphs are projective cores.

can we do the same for non-projective graphs?

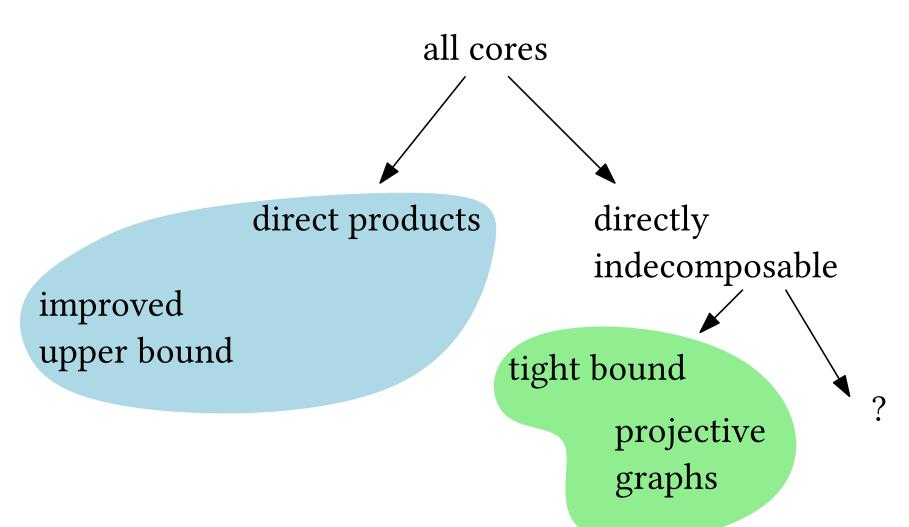
Proposition.

There exists an edge gadget for H if and only if H is projective.

Overview on the current situation



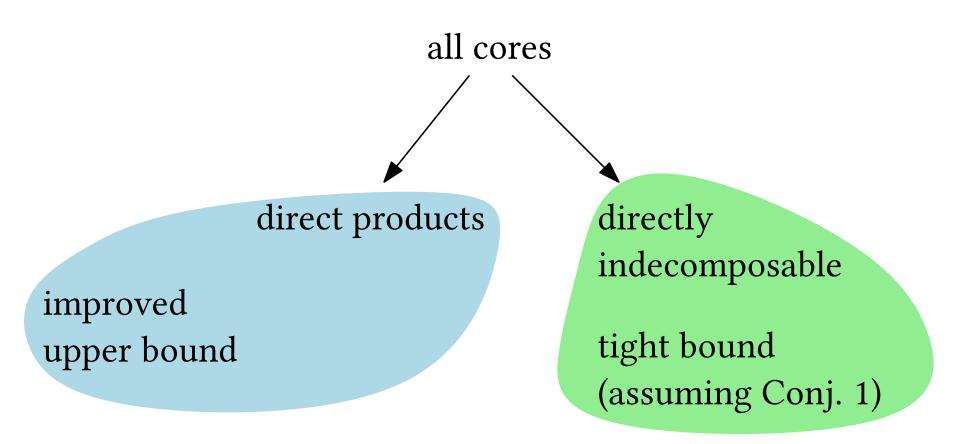
Overview on the current situation



Conjecture 1 (Larose, Tardif, 2001).

A connected non-bipartite core is indecomposable iff it is projective.

Overview on the current situation



Conjecture 1 (Larose, Tardif, 2001).

A connected non-bipartite core is indecomposable iff it is projective.

Direct products of graphs – a closer look

- ▶ consider $H = H_1 \times H_2 \times ... \times H_m$, where $|H_1| \ge ... \ge |H_m|$ and each H_i is indecomposable
- ▶ since H is a core, each H_i is a core
- Conjecture 1 implies that each H_i is projective
- ▶ recall that we can solve H-coloring of G in time $|H_1|^{tw(G)}$

Direct products of graphs – a closer look

- ▶ consider $H = H_1 \times H_2 \times ... \times H_m$, where $|H_1| \ge ... \ge |H_m|$ and each H_i is indecomposable
- ▶ since H is a core, each H_i is a core
- ► Conjecture 1 implies that each H_i is projective
- recall that we can solve H-coloring of G in time $|H_1|^{tw(G)}$
- Larose (2002) studied a subclass of projective graphs, called strongly projective

Theorem (Okrasa, Rz.).

If H_1 is strongly projective, then H-coloring of G cannot be solved in time $(|H_1| - \varepsilon)^{\mathsf{tw}(G)}$, unless the SETH fails.

Direct products of graphs – a closer look

- ▶ consider $H = H_1 \times H_2 \times ... \times H_m$, where $|H_1| \ge ... \ge |H_m|$ and each H_i is indecomposable
- ▶ since H is a core, each H_i is a core
- ► Conjecture 1 implies that each H_i is projective
- recall that we can solve H-coloring of G in time $|H_1|^{tw(G)}$
- Larose (2002) studied a subclass of projective graphs, called strongly projective

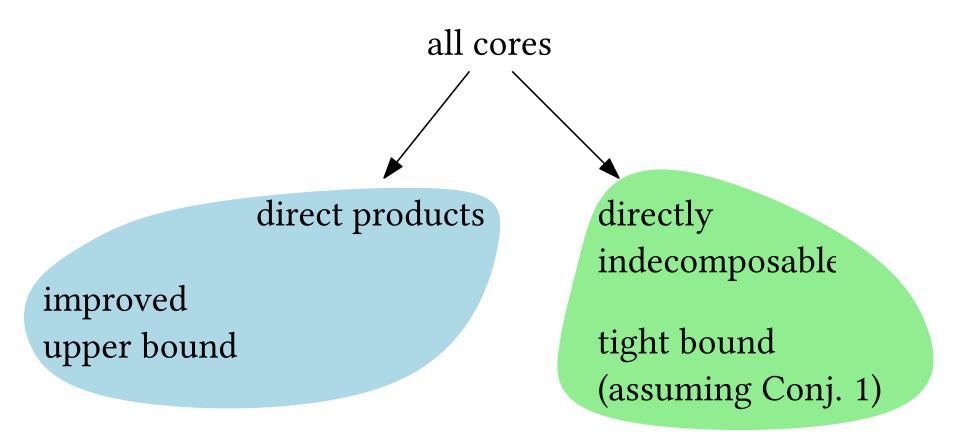
Theorem (Okrasa, Rz.).

If H_1 is strongly projective, then H-coloring of G cannot be solved in time $(|H_1| - \varepsilon)^{\mathsf{tw}(\mathsf{G})}$, unless the SETH fails.

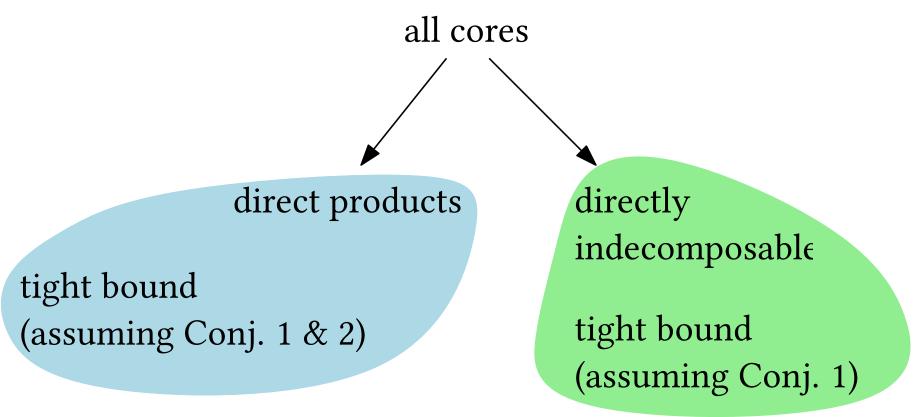
Conjecture 2 (Larose, 2002).

Every projective core is strongly projective.

Final overview



Final overview



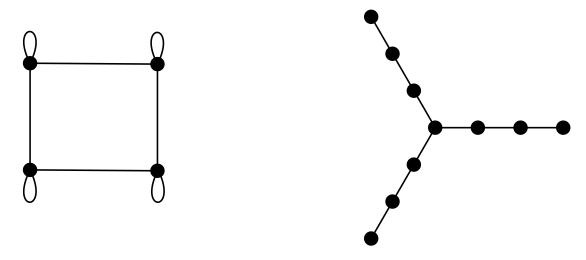
Theorem (Okrasa, Rz.).

Assume Conjectures 1 and 2. Let $H = H_1 \times ... \times H_m$ be a core, where $|H_1| \ge ... \ge |H_m|$. Then H-coloring of G a) can be solved in time $|H_1|^{tw(G)}$,

b) cannot be solved in time $(|H_1| - \varepsilon)^{\mathsf{tw}(\mathsf{G})}$, under the SETH.

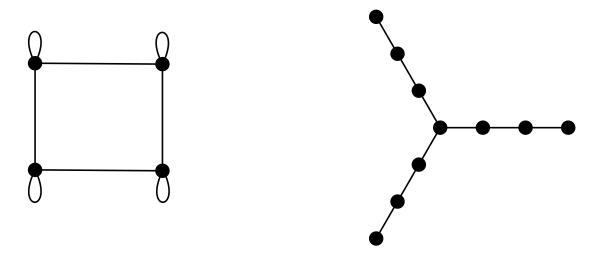
List homomorphisms

- each vertex ν of G has a list $L(\nu)$ of vertices of H
- \triangleright v can only be mapped to a vertex from L(v)
- ▶ it's a *harder* problem, in particular has more NP-hard cases



List homomorphisms

- each vertex ν of G has a list $L(\nu)$ of vertices of H
- \triangleright ν can only be mapped to a vertex from $L(\nu)$
- ▶ it's a *harder* problem, in particular has more NP-hard cases

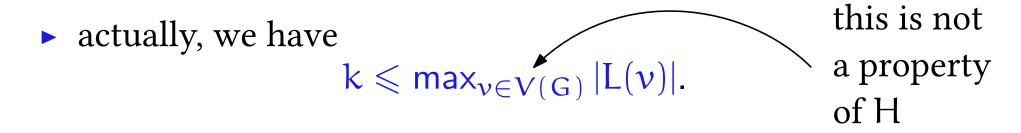


Problem.

For every graph H, find k = k(H), such that list H-coloring of G

- can be solved in time k^{tw},
- cannot be solved in time $(k \varepsilon)^{tw}$, unless the SETH fails.
- we still have $k \le |H|$ and k = |H| if H is complete

Algorithmic idea: incomparable vertices



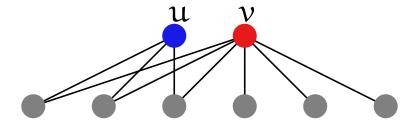
Algorithmic idea: incomparable vertices

actually, we have

$$k\leqslant \mathsf{max}_{\nu\in V(G)}\,|L(\nu)|.$$

this is not a property of H ... or is it?

▶ $u, v \in V(H)$ are comparable if $N(u) \subseteq N(v)$



- ▶ if both appear in one list, we can safely remove u
- no list contains two comparable vertices

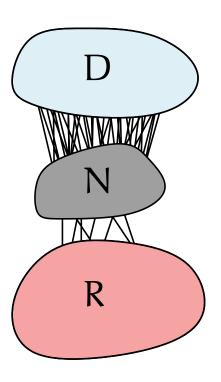
i(H) = size of the largest set of pairwise incomparable vertices

 $k \leqslant i(H)$

One more algorithmic idea: decomposition

we found three types of decompositions of H

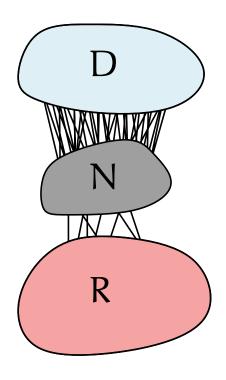
- N separates D and R
- N is a reflexive clique
- all edges between D and N are in H



One more algorithmic idea: decomposition

we found three types of decompositions of H

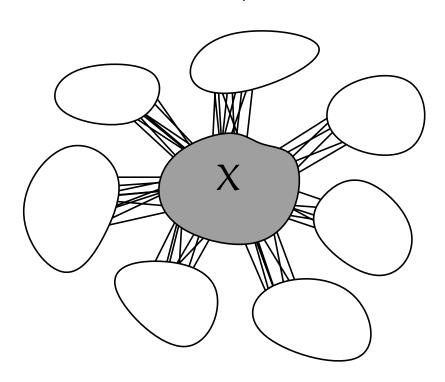
- N separates D and R
- N is a reflexive clique
- all edges between D and N are in H

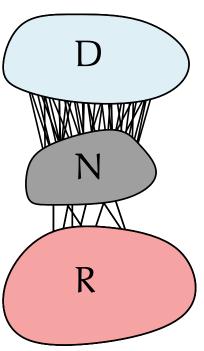


- ▶ for $u \in D$ and $v \in N$, always $N[u] \subseteq N[v]$
- vertices from D and N never appear in the same list
- if $x \in V(G)$ is mapped to D and $y \in V(G)$ is mapped to R, then every x-y path contains a vertex mapped to N

Decomposition lemma

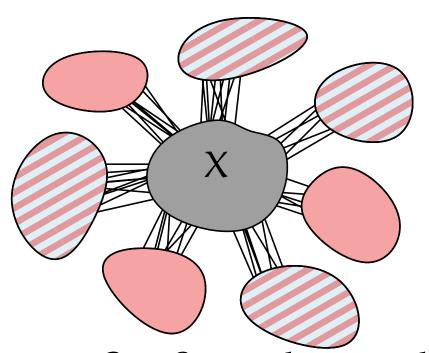
 $X = \{v : L(v) \cap N \neq \emptyset\}, \quad \mathcal{C} = \text{set of components of } G - X$

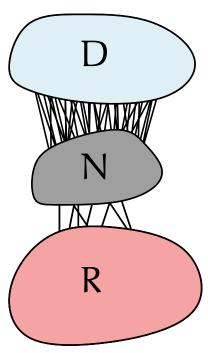




Decomposition lemma

$$X = \{v : L(v) \cap N \neq \emptyset\}, \quad \mathcal{C} = \text{set of components of } G - X$$

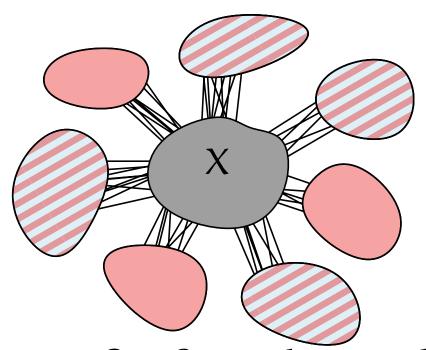


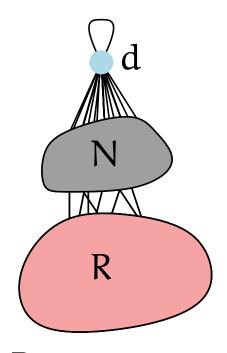


- every $C \in \mathcal{C}$ must be entirely mapped to D or R
- ▶ precompute list H[D]-coloring of each $C \in C$

Decomposition lemma

$$X = \{v : L(v) \cap N \neq \emptyset\}, \quad \mathcal{C} = \text{set of components of } G - X$$





- every $C \in \mathcal{C}$ must be entirely mapped to D or R
- ▶ precompute list H[D]-coloring of each $C \in C$
- collapse D to a single reflexive vertex d, obtaining H'
- ▶ update lists: if ν is in $C \in \mathcal{C}$, which can be mapped to D, then add d to $L(\nu)$

Decomposition lemma, continued

• we reduced an instance of list H-Coloring to $\mathfrak{n}^{\mathfrak{O}(1)}$ instances of list H[D]-Coloring and list H'-Coloring

Decomposition lemma.

If we can solve list H[D]-Coloring and list H'-Coloring in time c^{tw} , then we can solve list H-Coloring in time c^{tw} .

Decomposition lemma, continued

• we reduced an instance of list H-Coloring to $\mathfrak{n}^{\mathfrak{O}(1)}$ instances of list H[D]-Coloring and list H'-Coloring

Decomposition lemma.

If we can solve list H[D]-Coloring and list H'-Coloring in time c^{tw} , then we can solve list H-Coloring in time c^{tw} .

 $i^*(H) \approx \text{maximum } i(H') \text{ over all undecomposable induced}$ subgraphs of H

Decomposition lemma, continued

• we reduced an instance of list H-Coloring to $\mathfrak{n}^{\mathfrak{O}(1)}$ instances of list H[D]-Coloring and list H'-Coloring

Decomposition lemma.

If we can solve list H[D]-Coloring and list H'-Coloring in time c^{tw} , then we can solve list H-Coloring in time c^{tw} .

 $i^*(H) \approx \text{maximum } i(H') \text{ over all undecomposable induced}$ subgraphs of H

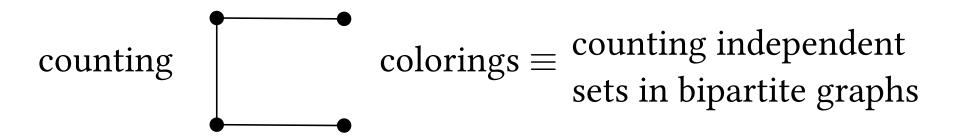
Theorem (Egri, Marx, Rz. + Okrasa, Piecyk, Rz.).

For every graph "hard" H, $i^*(H)$ is the correct bound:

- a) List H-Coloring can be solved in time $(i^*(H))^{tw}$,
- b) List H-Coloring cannot be solved in time $(i^*(H) \varepsilon)^{tw}$ (SETH).

Counting list homomorpshisms

- what is the number of list H-colorings?
- even more hard cases than for the decision variant



Counting list homomorpshisms

- what is the number of list H-colorings?
- even more hard cases than for the decision variant

```
counting \frac{\bullet}{\text{colorings}} \equiv \frac{\text{counting independent}}{\text{sets in bipartite graphs}}
```

- incomparable vertices do not work this time
- ▶ but we can assume each list is irredundant has no vertices with exactly the same neighborhood $\rightarrow |L(v)| \leq irr(H)$

Counting list homomorpshisms

- what is the number of list H-colorings?
- even more hard cases than for the decision variant

counting
$$=$$
 counting independent sets in bipartite graphs

- incomparable vertices do not work this time
- ▶ but we can assume each list is irredundant has no vertices with exactly the same neighborhood $\rightarrow |L(v)| \leq irr(H)$

Theorem (Focke, Marx, Rz.).

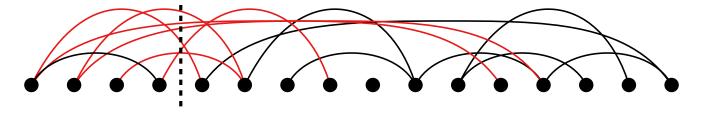
For every graph "hard" H, irr(H) is the correct bound:

- a) #List H-Coloring can be solved in time (irr(H))^{tw},
- b) #List H-Coloring cannot be solved in time $(irr(H) \varepsilon)^{tw}$ (#SETH).

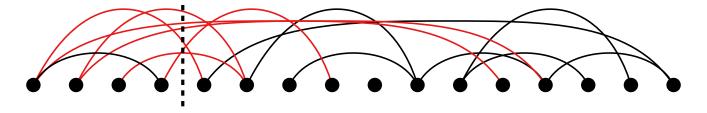
similar results are known for cliquewidth[Ganian, Hamm, Korchemna, Okrasa, Simonov]

- similar results are known for cliquewidth
 [Ganian, Hamm, Korchemna, Okrasa, Simonov]
- cutwidth minimize the number of edges crossed by a cut, over all vertex orderings

- similar results are known for cliquewidth[Ganian, Hamm, Korchemna, Okrasa, Simonov]
- cutwidth minimize the number of edges crossed by a cut, over all vertex orderings



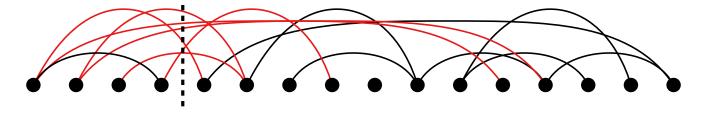
- similar results are known for cliquewidth
 [Ganian, Hamm, Korchemna, Okrasa, Simonov]
- cutwidth minimize the number of edges crossed by a cut, over all vertex orderings



Theorem (Jansen, Nederlof).

(List) k-Coloring can be solved in (randomized) time 2^{ctw}.

- similar results are known for cliquewidth[Ganian, Hamm, Korchemna, Okrasa, Simonov]
- cutwidth minimize the number of edges crossed by a cut, over all vertex orderings



Theorem (Jansen, Nederlof).

(List) k-Coloring can be solved in (randomized) time 2^{ctw}.

 complexity of CSP parameterized by the structure of the Gaifman graph

Even if meant for kids, still fun for adults

